
Quantum random walk search on satisfiability problems

Stephan Hoyer

Swarthmore College
Department of Physics and Astronomy

April 1, 2008

Adviser: David A. Meyer
Department of Mathematics
University of California San Diego

Abstract

Using numerical simulation, we measured the performance of several poten-
tial quantum algorithms, based on quantum random walks, to solve Boolean
satisfiability (SAT) problems. We develop the fundamentals of quantum com-
puting and the theory of classical algorithms to indicate how these algorithms
could be implemented. We also discuss the development of quantum random
walks and the principles that go into creating them, presenting existing work
on search algorithms using coined discrete-time quantum random walks. Al-
though our quantum algorithms do not solve SAT problems faster than may be
done classically, as a step toward that objective, we present the first example
of a quantum walk on a directed graph that has a significant increase in speed
over the analogous classical walk.

Contents

1 Introduction . 1
1.1 Quantum computing . 1
1.2 Quantum random walks . 2
1.3 Organization . 2

2 Classical algorithms . 3
2.1 Logic gates . 3
2.2 Computational complexity . 4
2.3 Satisfiability problems . 6
2.4 Evaluating k-SAT algorithms 10

3 Quantum computing . 13
3.1 Physical motivations . 13
3.2 Quantum mechanics on qubits 14
3.3 Quantum gates . 15
3.4 Reversible computation . 17

4 Quantum random walks . 21
4.1 Markov chains and random walks 21
4.2 Defining a quantum walk . 22
4.3 Quantum walks on a line . 23
4.4 Quantum walks on regular graphs 28
4.5 Walks on arbitrary undirected graphs 32
4.6 Quantum walks on quantum computers 33

5 Quantum walk search . 35
5.1 Quantum search . 35
5.2 Binary hypercube search . 36
5.3 Converting hypercube search to k-SAT 38
5.4 Performance of probabilistic algorithms 41
5.5 Quantum search on 2-SAT . 42

6 Directed quantum walks . 47
6.1 Defining a directed walk . 47
6.2 Directed walk on the line with loops 49

6.3 Returning to k-SAT . 52
6.4 General quantum operations 52
6.5 Directed quantum walks on any graph 55
6.6 Quantum directed walks on 2-SAT 56
6.7 Conclusions . 57

References . 61

Chapter 1

Introduction

1.1 Quantum computing

Quantum computing offers a physically based model for computation that may
be fundamentally more powerful than the computational model used for com-
puters today. Originally suggested by theoretical physicists Richard Feynman
and David Deutsch in the 1980’s, quantum computing remained little more
than a curiosity until Peter Shor’s discovery of a polynomial time integer fac-
torization algorithm in 1994 and Lov Grover’s subsequent development of a
quantum search algorithm in 1996 [13, 12, 29, 14]. The discovery of these
practical algorithms launched a flurry of interest which continues to this day.
Fundamental theoretical difficulties with quantum noise and error correction
have been resolved, meaning that in principle, these computers can be built
and operated efficiently to actually realize their potential [23]. Accordingly,
today the race is on to build scalable quantum computers. Many scientists
now believe that almost inevitably such machines will be built, however many
years that may be down the line.

But even when they are finally built, the hardware for quantum computers
will require software, and as yet this software—algorithms to run on quantum
computers—remains very limited. Shor’s factoring algorithm and Grover’s
search algorithm remain the foundations of the two main families of useful
quantum algorithms. There is the additional likelihood of efficiently simu-
lating real world quantum mechanical systems for chemistry, but these algo-
rithms remain remarkably limited compared to the set of algorithms still most
efficiently run on classical computers. Finding new and innovative quantum
algorithms is hard, because classical intuitions no longer hold. Regardless, this
task is important both to justify the expense and effort that will be required to
build such machines, and also because the realm of quantum algorithms still
seems to hold untapped potential. One such family of algorithms of recent
interest and potential are those based on so-called quantum random walks [5].

2 Chapter 1. Introduction

1.2 Quantum random walks

The classical random walk is one of the most basic concepts of probability.
When formulated with a finite number of states, it consists of randomly choos-
ing paths between vertices on a graph, and many randomized algorithms for
computing are such walks. These randomized algorithms are significant be-
cause they are often some of the simplest and fastest known ways to solve hard
problems [22]. Important applications include solving a variety of graph theory
problems, the fastest known tests of primality, and solving boolean satisfiabil-
ity problems. Similarly, random walks and Brownian motion are at the core
of statistical mechanics. Random walks have a clear appeal to both physicists
and computer scientists: they are a powerful tool for both describing physical
phenomena and writing algorithms.

Not surprisingly then, the quantum random walk can be developed from
both physical and computational directions as well. A quantum walk is defined
by the quantum mechanical movement of a particle on a graph such that if
its position were measured continuously, the probability distribution would
be a classical random walk. These walks also arise as the simplest versions of
quantum cellular automata, and as it turns out, include a discrete version of the
Dirac equation of relativistic quantum mechanics [19]. These walks have very
different properties from classical walks, as they do not converge to limiting
distributions and potentially spread much faster. As with classical walks on
classical computers, quantum walks could be run directly and efficiently on
quantum computers.

Our focus is on the algorithmic applications of discrete time quantum
walks. The frequent faster spreading of quantum walks offers some possi-
bility to improve the performance of randomized algorithms by running them
as quantum walks instead, but doing so with most randomized algorithms
of interest is difficult as there is no direct translation. We consider several
techniques to do so using the problem of boolean satisfiability (SAT), of cen-
tral interest to theoretical computer science, as a conceptual and quantitative
framework to guide our investigations.

1.3 Organization

We begin discussing the classical theory of algorithms as necessary to under-
stand both quantum computing in general and the specific problems we are
attempting to solve (Chapter 2). We follow with an introduction to the founda-
tions of quantum computing (Chapter 3), and introduce the notion and power
of the quantum random walk (Chapter 4). Specific techniques for speeding
up satisfiability problems in the form of quantum walk search are explored in
Chapters 5 and 6.

Chapter 2

Classical algorithms

This chapter lays the groundwork in computer science necessary to understand
quantum computing and the challenges in creating quantum algorithms. We
review logic gates and computational complexity, and then consider in depth
the problem of boolean satisfiability for which we hope to find a quantum
algorithm.

2.1 Logic gates

There are a number of equivalent theoretical models for classical computation,
but the fundamental model used by all modern computers is that of bits and
logic gates. The fundamental unit of information is a bit, either 1 or 0. Larger
blocks of information are represented by combinations of bits, so bits strung
together encode individual letters, documents, pictures, sound and so forth.
Thus data is represented by a string of n bits denoted {0, 1}n.

Each operation on a classical computer then may be considered as mapping
{0, 1}n → {0, 1}m for some n and m. These operations are called logic gates.
Classical computers rely on the principle that any logic gate can be constructed
from repetition of a small finite set of logic gates that only act on a few bits,
so all computation can be done with binary logic. Furthermore, each of these
operation can be built from a small set of fundamental one or two bit operations
such as not, and and or. One such set is given by the first four entries in
Table 2.1. These sets are called universal. Note the inclusion of the fanout
gate. This is often not raised to the level of a logic gate, as in a digital circuit
duplicating bits is as simple as attaching another wire. But the same sort of
wiring does not work in a quantum circuit, so it is best to make all operations
explicit. It is an easy exercise to show that nand (not and) with appropriate
dummy inputs can simulate each of the first three gates, so as it turns out,
merely the operations nand and fanout form a universal gate set.

4 Chapter 2. Classical algorithms

Gate Input → Output
and (a, b)→ ab
xor (a, b)→ a⊕ b
not a→ a⊕ 1

fanout a→ (a, a)
nand (a, b)→ ab⊕ 1

Table 2.1: Classical logic gates defined by their action on a, b ∈ {0, 1}. ⊕
denotes addition modulo 2.

2.2 Computational complexity

Stating the computational resources that an algorithm requires is more so-
phisticated than it may seem. It is easy to use a stopwatch to see how fast
a program runs, but such a metric is not very useful. It is dependent on the
particular hardware on which the program is run, and the computers of to-
day vary widely in speed, and are all overwhelmingly faster than those used
decades ago. Instead, we could count the number of fundamental operations
required, but this measure is still not universally meaningful because the same
algorithm may tackle problems of widely varying difficulty and which problems
are good benchmarks may change over time. Imagine we have a route-finding
algorithm that takes a map and destinations as input and outputs an optimal
driving plan. The measure of how long it takes to find a route from Philadel-
phia to New York might be a useful basis for comparison, but this is not why
we wrote the algorithm in the first place. We want to know roughly how long
the algorithm takes to find optimal routes based upon the map provided and
the destinations. In particular, we are interested in how the time requirements
for calculation scale in terms of quantitative measures like the number of junc-
tions and the distance between destinations. Finally, we usually do not care
how hard the easy cases are. If the same algorithm will be solving problems
at vastly different scales of difficulty at comparable frequencies, it is the hard
problems that determine the computational requirements.

Accordingly, computer scientists quantify the scaling of an algorithm by
describing how characteristics like the time or memory space required scale
as a function of input size n as it grows asymptotically large. A resource
requirement given by f(n) is described asO(g(n)) if f(n) ≤ c·g(n) for all inputs
as n→∞ with some constant c. Likewise it is described as Ω(g(n)) if f(n) ≥ d·
g(n) for all input as n→∞ with some constant d, and Θ(g(n)) if both O(g(n))
and Ω(g(n)). Accordingly O(g(n)) gives an upper bound on the requirement
in the worst case of input parameters of size n, whereas Ω(g(n)) gives a lower
bound in the best case. This notation gives a useful definition of speed and
space requirements for algorithms independent of physical implementations.
The difference in speed for an algorithm proceeding at some simple multiple
of the speed of another is usually not interesting, because faster computers
with identical design scale in performance in the same way. Since again the

2.2. Computational complexity 5

hardest cases are usually of the most interest, the notation using O(f(n)),
labeled “big O” notation, is the most common basis for comparison between
algorithms.

Problems are divided into computational complexity classes generally by
the time requirements of their best possible algorithms using big O notation.
The two main complexity classes used to classify the difficulty of problems
are P and NP. These classify problems known as decision problems, those
with only yes or no answers. This may seem overly restrictive, but nearly any
problem can be rewritten as a decision problem. For instance, we could restate
our route optimal route finding algorithm as the question of whether or not
there is a route from A to B of less than X total miles. P stands for the class
of such problems that can be solved in deterministic polynomial time, that is
in time O(poly(n)) where poly(n) is any polynomial of n. NP stands for the
class of problems to which proposed solutions can be verified in polynomial
time. A proposed solution gives a full description of a potential answer, so we
can quickly check the answer to the decision problem. For instance, given a
route between A and B, we can quickly check if it is less than X miles. Any
problem in P is in the class NP as well, since we can merely run the entire
algorithm to test any proposed solution. Problems in NP but not P are usually
considered to run in exponential time, even though strictly there exist rarely
encountered functions which are asymptotically larger than any polynomial
but smaller than any exponential.

More colloquially, P can be considered as the class of “easy” problems
whereas NP in general includes the class of hard problems as well. This break-
down makes sense because of the observation usually referred to as Moore’s
law, that the power of computers grows exponentially over time, which has
remarkably held true for the most part since when Moore first stated it over
four decades ago. Since t→∞, exp(t) > poly(t) for all exponential and poly-
nomial functions, so eventually a polynomial requirement will always be less
than an exponential one. Furthermore, an exponential increase in computa-
tional resources means that all problems that can be solved in polynomial time
can eventually be done easily for nearly any input size, whereas problems that
are exponentially hard will always remain hard.

Another subset of NP, termed NP-complete, is the set of all problems to
which a solution can efficiently be used to solve any other problem in NP.
Similar to the distinction between P and NP, “efficient” in a technical sense
means that a solution to the original problem would only need to be repeated
some at most some polynomial (sub-exponential) number of times to create
a mapping to the other problem. Since any NP-complete can be efficiently
mapped onto other hard problems, in some sense this is class of “hardest”
problems.

One of the most significant open questions in computer science and mathe-
matics is whether P is equal to NP. To show P=NP, it would suffice to find one
example of an NP-complete problem that is also in P, as this problem could be
adapted to every other problem in NP. Such a result would have revolutionary

6 Chapter 2. Classical algorithms

implications for computer science, as then nearly all hard problems could be
solved with relative ease. Accordingly, nearly all complexity theorists believe
that P 6=NP.

The power of quantum computers comes because there are a number of
quantum algorithms fundamentally faster than the best known classical al-
gorithms, in the sense of big O asymptotic notation. There are problems
that computer scientists believe cannot be solved classically in sub-exponential
time, but can be solved in polynomial time on a quantum computer, the
most notable example of these problems being integer factorization. The best
classical algorithms take exponential time to factor large, but on a quantum
computer, using Shor’s algorithm, integer factorization can be done in polyno-
mial time [29]. But importantly, integer factorization is not NP-complete. If
so, quantum computers could solve nearly any computational problem easily.
Quantum information theorists do not expect to find any such problems either,
as this would imply in some sense a lack of bounds in the computational power
of physical systems [1]. Quantum computers are good, but not that good.

2.3 Satisfiability problems

The problem of boolean satisfiability (SAT) is one of the archetypal NP-
complete problems. A satisfiability formula is given by any logic gate or
combination of gates that takes n bits to 1 bit. Such a formula is said to
be satisfiable if there exists a truth assignment—a set of bit values assigned
to each variable—such that the entire statement evaluates to 1. The SAT
problem is then the question of whether or not a given satisfiability statement
is satisfiable. Clearly this is a decision problem, and since it can be checked
in polynomial time if a proposed truth assignment evaluates to 1 or 0, this
problem is in NP. It should not be surprising that SAT is NP-complete, since
as we already noted logic gates form the fundamental building blocks of mod-
ern computers. Thus the statement that SAT is NP-complete is equivalent to
noting that any hard problem can be run with roughly equivalent efficiency
on the hardware of a modern computer.

As it turns out, there is far more flexibility in SAT formulas than is required
for NP-completeness. A useful subset of SAT formulas are those that can be
written in k conjunctive normal form (k-CNF). A formula in k-CNF consists
of literals defined as one of n variables or their negation, of which groups of k
are combined by or to form clauses, with m clauses combined by and. As a
concrete example, consider the following formula:

k literals per clause︷ ︸︸ ︷
(a or ¬b or c) and (¬a or b or d) and (¬a or a or ¬c)︸ ︷︷ ︸

m clauses with literals chosen from n variables (a, b, c, d, . . .) and their negations (¬a = not a)

.

The problem of k-satisfiability (k-SAT) consists of all SAT formulas in k-CNF.
As it turns out, k-SAT is also NP-complete for k ≥ 3. Since 3-SAT is NP-

2.3. Satisfiability problems 7

000 100

001

010 110

111

101

011

Figure 2.1: The binary hypercube in 3 dimensions. Vertices correspond to
each bit array of length n, and edges connect paths that only differ in one bit.

complete and given by such a prescribed form, it is one of the simplest regular
forms of SAT that maintains the full complexity of the problem. Also, since
numerous other problems have been shown to be NP-complete by noting their
equivalence to 3-SAT, many consider it the canonical NP-complete problem.
In fact, the term “SAT” often refers directly to 3-SAT.

Remarkably, even though 3-SAT is NP-complete, 2-SAT with its very sim-
ilar form is in P. This means that 2-SAT is actually an easy problem. We
will prove this by presenting a simple random walk algorithm due to Christos
Papadimitriou [24]:

Guess an initial truth assignment at random.
While the SAT formula is unsatisfied:

1. Choose an unsatisfied clause at random.
2. Flip the value of the variable associated with a random literal
in that clause.

Note that a clause is said to be unsatisfied just as for a complete formula, if it
evaluates to 0. We will spend a lot of time analyzing this algorithm because
it will also be a focus of our interest in random walk search procedures.

Before we present a proof of the speed of this algorithm, there are a few
things worth observing about it. First, note that we can represent any truth
assignment as a position on the binary hypercube in n-dimensions, the n-
dimensional space where there are exactly two possible values {0, 1} in each
dimension, as was perhaps alluded to by referring to a string of bits as {0, 1}n.
A binary hypercube is shown is in Fig. 2.1.

But more specifically to this problem, note that the algorithm given here
for 2-SAT is a random walk algorithm that proceeds along the edges of this
binary hypercube. In particular, the algorithm proceeds by picking a random
starting vertex, and then flipping the value of one variable at a time. In fact,
this 2-SAT algorithm can be considered as exactly a random walk proceeding
along a directed graph where edges are taken from the set of those appearing

8 Chapter 2. Classical algorithms

<1/2<1/2<1/2

>1/2>1/2>1/2

3210

101

111

110

100

010

011
000

001

Solution

Figure 2.2: Reduction of hypercube walk to the line. Vertices are grouped by
their Hamming distance from a solution, here chosen arbitrarily at 000.

on the binary hypercube, with possibly redundant paths in the case that a
variable appears in multiple unsatisfied clauses.

Theorem. If its formula is satisfiable, the 2-SAT algorithm given above ter-
minates in O(n2) steps.

Proof. In the worst case scenario that this formula is satisfiable, there is exactly
one satisfying truth assignment, and the initial guess is as far away from that
solution as possible. We can group truth assignments by how many bits they
have that are different from the solution. This measure of the number of
different bits is known as the Hamming distance. This grouping by Hamming
distance from x0 = 000 is shown in Fig. 2.2. Since each possible move along
the hypercube is a change of the value of one bit, each either increments or
decrements the Hamming distance from the solution, so we can consider this
algorithm as a random walk along the line given by this set of distance values
as well. If there are n variables, then this walk is along the line [0, n].

At each position along the line, there is at least a 1/2 probability of moving
closer to the solution, because in each unsatisfied clause, there are at most two
variables, at least one of which must have a different value from its value in
the solution. The walk only terminates when it reaches the end of the line
at distance x = 0 from the solution. At the other end, it reflects from the
position of maximum distance x = n to the position x = n− 1 with certainty.

We can write down a recurrence relation for the number of expected steps
Ex at position x until the walk terminates in terms of the number of expected

2.3. Satisfiability problems 9

steps left at adjacent positions as

Ex =
Ex−1

2
+
Ex+1

2
+ 1, for 0 ≤ x < n (2.1)

as in the worst case there is at most a 1/2 chance of moving to a position at
greater distance from the solution at the next step, at which point one more
step has been made. We also have the constraints

E0 = 0 (2.2a)

En = En−1 + 1 (2.2b)

as at x = 0 the walk terminates and there is only one possible move at x = n.
Since the recurrence relation involves two previous terms, clearly these two
initial conditions completely specify Ex. Without delving into the theory of
recurrence relations, we can guess the unique solution

Ex = n2 − (n− x)2, (2.3)

which can be easily verified to satisfy Eqs. (2.1) and (2.2). In the worst case,
we start position x = n, so algorithm is expected to terminate in n2 steps.
By repeating this algorithm some constant number of times, we can make
the probability of failure in the case that a satisfying solution exists arbitrar-
ily small. Then if after O(n2) steps the algorithm does not terminate, with
arbitrary certainty the formula is unsatisfiable.

The polynomial speed of this algorithm relies on the fact that there is
always at least probability 1/2 of moving closer to the solution at the next
subsequent step so that Eq. (2.1) holds. If the constraint is any lower bound
than 1/2, then the algorithm turns out to run in exponential time. Accordingly,
the algorithm is slower for 3-SAT because the minimum probability of success
is 1/3 if only one variable in a clause has the wrong value. The run time of
this algorithm is thus very precariously dependent on the particular structure
of the graph it performs a random walk on.

We call the formula f(x) that evaluates the satisfiability statement for a
given truth assignment an Oracle function because it tells us when we have
reached a solution to our “search” problem over all possible arrays of binary
values. This algorithm only requires checking the Oracle O(n2) times. This
makes it notably more efficient than brute force search, which would require
evaluating the Oracle at each position on the binary hypercube, 2n positions in
all, to check each possible solution. We have gained a substantial improvement
in speed by performing search on a graph instead of the unstructured problem.
Faster algorithms for 2-SAT exist than solve the problem in as little as O(n)
steps, but this algorithm is remarkably simple and can be expressed as a
random walk.

The primary reason why this 2-SAT algorithm is of significance is because
it is similar to a very fast algorithm for 3-SAT. Since 2-SAT is such an easy

10 Chapter 2. Classical algorithms

problem, it is generally only of interest because of its connection to 3-SAT.
3-SAT is a problem of substantial interest to computer scientists for which
there have been ongoing efforts to find fast algorithms. As for 2-SAT, the
naive brute-force search of each possible solution runs in 2n steps, but better
algorithms exist. One of the very best to date is due to Uwe Schöning [26]. At
its core is the same procedure as the 2-SAT algorithm by Papadimitriou, how-
ever the loop is only repeated 3n times before the algorithm is run again in its
entirety with a new guess of an initial truth assignment. After some number
of repetitions taking no more than O((4/3)n) steps in total, the algorithm will
terminate successfully with arbitrarily high constant probability if a satisfying
truth assignment exists. Note that the fact that the algorithm repeats is not
actually any different from the 2-SAT algorithm, as both only terminate suc-
cessfully after some number of steps with some probability. Reaching arbitrary
certainty in either case would require repetition, although in the case of 2-SAT
it would suffice to merely run continue the same run of the algorithm for longer
as well. Although Schöning’s algorithm is no longer remains the very fastest
for 3-SAT, it remains among the best, and many superior algorithms are still
based off of it.

2.4 Evaluating k-SAT algorithms

Evaluating new algorithms for 2-SAT and 3-SAT by numerical simulation in-
stead of analytical techniques requires measuring speed on some set of formulas
instead of establishing some abstract upper bound. But k-SAT problems can
vary widely in difficulty, and it is easy to cook up formulas that are either sat-
isfiable or unsatisfiable for all truth assignments. The tricky cases are those
that a priori cannot be categorized as likely satisfiable or unsatisfiable. This
should correspond to a set of formulas for which on average it takes a long
time to find a solution, giving some rough estimate of the upper bound.

The simplest way to find k-SAT formulas to test other than taking them
directly from real world problems would be to generate them uniformly at
random with n variables and m clauses. If we are interested in measuring the
performance of a k-SAT algorithm at different values of n, then for given n and
k, we need to somehow pick the number of clauses m. For randomly generated
formulas, it is clearly far more likely for there to be multiple solutions if m is
small since there is a smaller set of constraints, and as m increases randomly
generated formulas should be less and less likely to have any solutions at all.
This transition between likely satisfiable and likely unsatisfiable formulas can
be considered as sort of numerical phase transition occurring at some critical
ratio α = n/m of the number of variables to the number of clauses, and there
is an actually an extensive literature examining these sorts of transitions from
the perspective of statistical mechanics [9]. Randomly generated formulas at
this phase transition are neither more likely to be satisfiable or not, so these
are the hardest cases. Since some of the best 3-SAT algorithms run slowest

2.4. Evaluating k-SAT algorithms 11

5

4

3

2

1

0

α
15105

n

2-SAT

Figure 2.3: Location of phase transition for 2-SAT problems at small n in
terms of the parameter α = m/n. As n→∞, α = 1 for 2-SAT and α ≈ 4.25
for 3-SAT.

on randomly generated formulas at the transition, it makes sense to use this
transition when evaluating the performance of algorithms numerically [15].
These algorithmic phase transitions have been studied and classified in the
same sorts of ways as with physical transitions. For example, 3-SAT has a
first-order (discontinuous) transition in terms of the number of clauses m,
whereas the transition with 2-SAT is second-order (continuous). It turns out
that in the limit as n → ∞, for 2-SAT this transition is at α = 1 and for
3-SAT at about α = 4.25, but the transition moves to this limit relatively
slowly. Accordingly, for use in later numerical trials, we give the location of
the phase transition for 2-SAT in Fig. 2.3.

Another way to find hard cases is the obvious measure of counting the
number of solutions. Then k-SAT formulas with only one solution should
be the hardest to solve. This is most dramatically true for a random brute-
force approach, although in practical instances, we can imagine that multiple
solutions may be clustered structurally, so multiple solutions could be nearly
as hard to find as one solution for a classical random walk or systematic search.
There are two obvious ways to generate such statements randomly. One option
is add clauses one by one until a only one solution remains or the formula
is unsatisfiable, in which case we backtrack one step. The alternative is to
randomly generate formulas at the phase transition and discard them unless
they have one solution. The distinction is not very important, and accordingly
we will choose the second method, if only because it seems more analogous to
the more general technique.

Chapter 3

Quantum computing

3.1 Physical motivations

The potential of quantum computing is alluded to by the difficulty of simulat-
ing quantum systems on a classical computer. For example, consider a system
of 100 particles each with two possible states. If this system were classical,
we could write down its state just with 100 zeros or ones. But if this system
were quantum mechanically, recording its state would involve writing down
2100 complex numbers, more numbers to keep track of than the number of
atoms in the visible universe, estimated at roughly 1080. Accordingly there is
clearly no way that a classical computer could calculate exactly any sort of
non-trivial evolution of such a system.

This suggests a natural question leading to quantum computing, originally
by Richard Feynman, of whether such hard to simulate systems could be har-
nessed directly to solve other hard problems of interest [13]. One obvious
and very important application would be simulating quantum systems them-
selves, already of central interest to many chemists and biophysicists. But
in a broader sense, quantum simulation alone is a very limited of application.
More interesting is the question of whether more general computational needs,
as we use classical computers for, can be better met by quantum devices.

In particular, in this chapter we present a general model of computing
with quantum systems that is believed to give as much computational power
as possible with quantum systems. The answer to the question of whether
quantum computers are fundamentally more powerful than classical machines
seems to be a resounding yes. Some such algorithms for quantum search will be
identified in Chapter 5, although the algorithms providing the most compelling
evidence for this answer are not the focus of this thesis. For further details
about other quantum algorithms and implementing quantum computing, a
good reference is the introduction to quantum computing and information by
Nielsen and Chuang [23].

14 Chapter 3. Quantum computing

3.2 Quantum mechanics on qubits

Quantum computing builds from very basic concepts in quantum mechanics.
The gate model of quantum computing that we will construct here relies only
on a small subset of these laws. Here we will review the foundations, although
portions of this thesis may not be accessible to those without further familiarity
with quantum mechanics.

The evolution of quantum states is deterministic, but the process of mea-
suring a quantum system is stochastic. The state of a quantum system is
given by a vector written |ψ〉 in a complex vector space. Each dimension of
the vector space corresponds to possible result from measuring the system,
such as the location of a particle. If ψi indicates the projection of |ψ〉 onto
the ith dimension, then measurement of the ith result has probability |ψi|2.
“Measurement” is an ambiguous concept, corresponding to a result indicated
by a detector in the lab. It is the only way that classical information may be
extracted from quantum systems: there is no way to determine the exact state
of such a system. Since a detector always registers a value, these probabilities
must sum to one. This corresponds to the requirement that the state |ψ〉 must
have length 〈ψ|ψ〉 = 1, as 〈ψ| indicates the conjugate transpose |ψ〉†. Since
quantum mechanics is linear, transitions between quantum states are given by
length preserving transformations. These correspond to left multiplication by
a unitary matrices U , that is those such that UU † = U †U = I.

Quantum computing uses systems built from the natural quantum analog
of the bit, the qubit. A qubit is any two dimensional quantum system with
orthonormal states labeled |0〉 and |1〉. Accordingly it can be measured in
either of the classical states 0 or 1. But qubits can also be in any superposition
of |0〉 and |1〉, in the state |ψ〉 = a |0〉 + b |1〉 with |a|2 and |b|2 corresponding
to the probabilities of measuring 0 and 1. Larger systems are built from
systems that could describe multiple qubits, with basis states given by the
tensor product of the basis vectors for the original qubits. If two qubits are
specified by independent states |ψ1〉 and |ψ2〉, then a combined system is given
by the tensor product |ψ1〉 ⊗ |ψ2〉. Accordingly systems formed by two qubits
are a four dimensional with basis states |0〉⊗|0〉, |0〉⊗|1〉, |1〉⊗|0〉 and |1〉⊗|1〉.
These states are generally referred to with the tensor product symbol omitted,
as |00〉 and so forth, corresponding to a result from measurement. Thus a
quantum system upon measurement gives a result with the same number of
classical bits as there are qubits. More generally, larger systems are built in
the analogous fashion with simply more qubits.

Quantum algorithms consist of these qubits and unitary operations, called
quantum gates, that are applied to them. As the first step of an algorithm,
the qubits are initialized in some uniform starting state, usually in the state
|00 . . . 0〉. The qubits are processed through quantum gates, and at the end of
any algorithm, the state of the system is measured so that a classical result
may be obtained. There is no particular quantum system such as an atom
or photon that a qubit represents—rather, as with classical bits, a qubit is

3.3. Quantum gates 15

an abstract building block that could refer to any quantum system. As with
classical computers, we can abstract away the details of how these machines
are built. There are many proposals for implementations that are for the most
part theoretically equivalent.

Because quantum mechanical systems are linear, we can put the initial
state of our system in any superposition of input states. So in a single evalu-
ation of a unitary operation on the superposition of all possible input states,
we can obtain a quantum mechanical state that is some combination of results
that classically could only be obtained from evaluating each possible result
separately. Accordingly it might seem that quantum computers can run ev-
ery possible input at the same time. This is a frequent misconception, but
quantum states cannot be known absolutely as they can only be obtained by
the physical process of measurement. Thus this sort of naive parallelism gives
no more information on average in one evaluation than by choosing the input
to an equivalent classical circuit at random. However, this does allude to the
where the power of quantum computing arises. Sometimes the clever use of
these superpositions allows information to be obtained at substantially faster
speeds than is known or possible classically.

3.3 Quantum gates

As with classical computing, it is generally not helpful to consider quantum
algorithms as a single unitary transformation. Accordingly, as with classical
operations and logic gates, we generally break down unitary operations into a
series of sub-operations known as quantum gates.

For clarity, such operations are often written in a form known as quantum
circuit notation. Quantum circuit notation is used to represent the action
of a quantum system on a set of qubits, like a classical circuit acts on bits.
Qubits are indicated by lines and multiple qubits may be indicated by slashes
through those lines. Operations are indicated by labeled boxes intersecting
qubits. As is written for classical circuits, time always proceeds from left to
right. Also, as the final step in a quantum algorithm, measurement is often
indicated explicitly by the icon

NM
 .

The operation U applied to a qubit |ψ〉 is written in quantum circuit notation
as

|ψ〉 U .

Overall, this framework is especially useful because it keeps a physical imple-
mentation of quantum devices in mind.

Since quantum transitions are given by matrices, we can define any oper-
ation by considering its action on a set of basis vectors. So to construct a
quantum not gate X, we want a qubit starting in with a definite value of 0

16 Chapter 3. Quantum computing

or 1 to be in the opposite state after applying X. Thus within an unmeasur-
able phase factor eiφ, we require X |0〉 = |1〉 and X |1〉 = |0〉. If we make the
associations

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
,

then X must be given by

X =

(
0 1
1 0

)
, (3.1)

the Pauli σx matrix. But unlike the classical case, this gate is far more powerful
as it can act on any linear combination a |0〉+ b |1〉.

Of course, quantum gates can do more than merely copy classical operations—
any unitary matrix can serve as a quantum gate. Another standard one-qubit
operation is the Hadamard transform

H =
1√
2

(
1 1
1 −1

)
. (3.2)

The Hadamard transform takes the state |0〉 to 1√
2
(|0〉+ |1〉), and so is useful

for creating a superposition of input states.

In the standard convention, the tensor product of definite single qubit
states |i1〉 , . . . , |in〉 where each ik is 0 or 1, is written as |i1〉⊗|i2〉⊗ . . .⊗|in〉 =
|i1i2 . . . in〉. Such states are ordered in this “computational basis” in ascending
numerical order with i1i2 . . . in taken as the binary representation of a number,
which is often written in base ten. Each state can be identified directly with
the number for which it is the binary representation. This computational
basis provides a natural ordering and basis for writing unitary transformation
of these combined states. Arbitrary spaces of any finite dimension m can
be constructed merely by requiring that the subspace with i1i2 . . . in ≥ m
starts with zero probability amplitude. We can now see that the Hadamard
transform acting on each qubit individually, denoted H⊗n, takes the state |0〉
to a superposition of all possible states:

H⊗n |0〉 = H |0〉 ⊗ . . .⊗H |0〉 (3.3)

=
1√
2n

(|0〉+ |1〉)⊗ . . .⊗ (|0〉+ |1〉) (3.4)

=
1√
2n

(|0 . . . 0〉 ⊗ . . .⊗ |1 . . . 1〉) (3.5)

=
1√
2n

(|0〉+ |1〉+ |2〉+ . . .+ |2n − 1〉). (3.6)

This feature makes the Hadamard transform a common initialization step in
quantum algorithms.

3.4. Reversible computation 17

Another gate of central importance in quantum computing is the controlled
not gate c-not. Acting on two qubits, it is given in matrix form by

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.7)

Its action is to not the value of the second bit if the first bit is 1. In quantum
circuit notation, it is written

|c〉 •
|ψ〉 ��������

where |ψ〉 is the controlled qubit and |c〉 is the controlling qubit. As it turns
out, the c-not gate and the set of single qubit unitary operations forms a
universal gate set for quantum computing: any unitary transformation can be
created by their combination [23]. More generally, it can be useful to consider
the controlled-U gate written in block form as(

I 0
0 U

)
, (3.8)

where if the first bit is 1, an arbitrary unitary operation U is applied to re-
maining qubits. In quantum circuit form, the controlled-U gate is written
as

|c〉 •
|ψ〉 U

where |c〉 is the control qubit acting on the qubits |ψ〉. Along these lines, the
controlled not gate is also the controlled-X gate. Also, instead of the symbol
•, the symbol ◦ can be used to indicate a controlled not changing the second
bit if the first bit is in the state |0〉.

The process of building an arbitrary quantum circuit is done starting from
a basic set of gates that allow for any quantum calculations with arbitrarily
small bounded error. Such a complete gate set is given by the Hadamard gate,
the c-not, and two other single-qubit gates, labeled the phase gate and π/8
gate. Thus hardware implementations of quantum computing only need to use
a small set of reproducible gates. Not all unitary operations can necessarily
be simulated efficiently by a particular gate set, but schemes can be identified
that suffice for arbitrary quantum algorithms.

3.4 Reversible computation

Quantum mechanical transitions are unitary. But logic gates from classical
computing such as and are not reversible, never mind something that could
be made unitary. How could such operations be made quantum mechanical?

18 Chapter 3. Quantum computing

Input Output
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 3.1: Truth table for the Toffoli gate.

The answer lies in reversible computing, as every logic gate in classical com-
puting can be made reversible, and then be extended such that they may be
implemented on a quantum computer.

Without loss of generality we can make any irreversible operator reversible
by saving the results of the operation in a different bit. For instance, the
operation and: (a, b) → ab, can be made reversible by taking (a, b, 0) →
(a, b, ab). We can extend this principle to create a gate known as the Toffoli
gate which provides a reversible universal basis for computation. This gate is
defined by its action on three bits

(a, b, c)→ (a, b, c⊕ ab),

where ⊕ denotes addition modulo 2. Consider applying the Toffoli gate twice:
(a, b, c) → (a, b, c ⊕ ab) → (a, b, c ⊕ ab ⊕ ab) = (a, b, c). Thus the Toffoli gate
is its own inverse, so it is reversible. The truth table for this gate is shown in
Table 3.1. Since a nand b = 1⊕ ab is given by the third bit in a Toffoli gate
for c = 1, and a Toffoli gate can also do the operation fanout for b = 1 and
c = 0, the Toffoli gate can simulate a universal gate set, and thus is a universal
gate itself.

As it takes a constant number of Toffoli gates to simulate any other funda-
mental logic gates, reversible computation is as fast as irreversible computa-
tion within a constant factor, a slowdown irrelevant in terms of computational
complexity. As the Toffoli gate is reversible, it can be written out in full form
as a 23 × 23 unitary matrix providing definite transitions between the states
|abc〉. This matrix can be directly constructed from looking at Table 3.1: it
is the “doubly controlled-not” gate, where the third bit is flipped only if both
of the first two bits are 1. More generally, it is clear that we can make any
reversible classical operation taking bit values j → k quantum by mapping
the basis vectors |j〉 → |k〉. Then as the Toffoli gate is a quantum gate, all
reversible classical computation and thus all classical computation may be run
on a quantum computer.

This detail is important for several reasons. First of all, it shows that clas-
sical computing is a strict subset of quantum computing, so a quantum com-
puter would be sufficient for all computational needs. Further, even though

3.4. Reversible computation 19

all classical computation could just be run on a classical computer directly,
the theoretical ability to mock up quantum versions of an any classical cir-
cuit is important when considering minor adaptations of otherwise classical
algorithms. This is important for the implementation of quantum walks as
discussed in the following chapter.

Chapter 4

Quantum random walks

4.1 Markov chains and random walks

Before considering quantum random walks, it is worthwhile to recall the for-
malism of classical random walks, embodied in the notion of a Markov chain.
Consider any system undergoing random transitions between a discrete set of
possibilities. Let a column vector p with each term positive and summing to
one be a probability distribution over these states. For each possible state,
there is corresponding column vector that gives the probability of transition
to each other state. Accordingly transitions to another state via a random
process can be described by a Markov transition matrix M where the ijth
entry is given by

Mij = Pr(i|j), (4.1)

and the state after the random process is given by1

p′ = Mp. (4.2)

Repeated applications of the random process can be determined by repeated
left multiplication by M .

For example, for the random walk on a line with equal probability of moving
left and right, the transition matrix is given by the band diagonal matrix

M =

. . .
1
2

0 1
2

1
2

0 1
2

1
2

0 1
2

. . .

 . (4.3)

1The standard convention of mathematicians for Markov chains uses right multiplication,
but instead we use an equivalent formulation with left multiplication to emphasize their
connection with changes of state in quantum mechanics.

22 Chapter 4. Quantum random walks

Thus a particle at position n goes to positions n − 1 and n + 1 each with
probability 1

2
.

In general, Markov chains greatly aide the analysis of complicated random
systems. For instance, stationary distributions can be identified immediately
as the eigenvectors of M with eigenvalue 1. They are a widely used tool
in probability theory, but for our purposes it will be sufficient to note their
existence and form for comparison to quantum walks.

4.2 Defining a quantum walk

Equation (4.2) looks remarkably similar in form to the quantum mechanical
evolution of a state |ψ〉 under the unitary operator U ,

|ψ′〉 = U |ψ〉 , (4.4)

with the new normalization condition 〈ψ|ψ〉 = 1. Evolution after each addi-
tional time steps proceeds again by left multiplication by U . But if projective
measurement onto basis state is performed after each application of U , the
unitary transition U becomes a stochastic process that can be described by a
Markov chain, with a transition matrix given by entries

Mij = U∗ijUij = |Uij|2, (4.5)

corresponding to the ijth entry Uij of U . This “classical limit” is the natural
way in which a quantum operation suggests a random walk.

We call such an quantum system when thought of in the context of the
random walk that is its classical limit a quantum random walk. Originally
considered in continuous time and space in 1993 [4], quantum random walks in
discrete space have been the focus of subsequent work because they amenable
to use in quantum algorithms. Although our focus is on quantum walks dis-
crete in both time and space, there is significant literature concerning quantum
walks that evolve in continuous time. They will not be discussed here, but
they have similarly powerful algorithmic applications, including exponential to
polynomial speedup for some contrived problems [10]. Thus in some sense—
not very usefully—any quantum system can be considered as such a walk, so
in practice systems are labeled quantum walks to emphasize their connection
with classical walks.

The difficulty with this definition is that a quantum mechanical operation
induces a random walk, not the other way around. As the standard challenge
in quantum computing is to speed up classical algorithms, we would like to be
able to directly find quantum analogs of classical walks. Any sort of random
walk with discrete positions marked on a graph is a natural candidate. The
focus of research in this subfield has been to discover quantum versions of
classical walks of interest and examine the distinctions between quantum and
classical versions, all with an eye toward “speeding up” algorithms based on
such walks.

4.3. Quantum walks on a line 23

We will introduce quantum walks and their uses in the remainder of this
chapter. For further details and more applications, we recommend that the
interested reader consult review articles by Ambainis [5] and Kempe [16].

4.3 Quantum walks on a line

The simplest classical random walk is a particle on a discrete line in one
dimension. At each step, a coin is flipped and the particle moves left or
right with equal probability. The transition matrix for this walk was given
previously in Equation (4.3), and the probability distribution from this walk
is well known to proceed as a binomial distribution. The probability of finding
the particle at position n at time T p(n, T) is zero if n+T is odd and otherwise
given by

p(n, T) =
1

2T

(
T

1
2
(n+ T)

)
, if n+ T even (4.6)

where the deviation from the direct binomial distribution
(
T
n

)
arises because

the walking particle moves left or right dependent on a coin flip, instead of
merely moving on each successful flip. In any case the distribution for this walk
is identical to the binomial distribution centered at the origin adding zeros at
alternate positions. Over time, the average position 〈n〉 = 0 and the variance,
the average distance squared to the mean, is given by σ2 = 〈(n − 〈n〉)2〉 =
〈n2〉 = T , as can be show by straightforward algebra.

Since so much of the representative power of the classical random walk is
found on the line, the line is a natural first candidate for finding a quantum
random walk as well. Following the definition given in the proceeding section,
we would like to find a quantum walk on the line with a random walk as its
classical limit.

The most obvious way to define a quantum walk on a line is to choose as
a set of basis states |n〉, n ∈ Z representing each integer. Then we would like
to find a unitary operator U that acts as a classical walk under measurement.
The operation should act identically on each position state |n〉 by altering the
position with some probability. Defining its action on each basis vector |n〉,
then the walk must be given by some U such that

U |n〉 = a |n− 1〉+ b |n〉+ c |n+ 1〉 , (4.7)

where a, b, c ∈ C. However, defining a non-trivial quantum walk in this manner
is not possible, as the following theorem shows.

Theorem. If this operation U as defined above is unitary, then exactly one of
the following holds (a simple case following the general proof given by Meyer
[19]):

1. |a|2 = 1, b = c = 0

24 Chapter 4. Quantum random walks

2. |b|2 = 1, a = c = 0

3. |c|2 = 1, a = b = 0

Proof. Written in matrix form, we have

U =

. . . a

b a
c b a

c b

c
. . .

 .

Since the columns of U form an orthonormal set, we have

c∗a = 0

a∗b+ b∗c = 0

|a|2 + |b|2 + |c|2 = 1.

From the first two equations, at least two of a, b and c must equal zero, and
by the last equation one of the cases 1-3 is fulfilled.

Accordingly if a walk is defined as in Equation (4.7) at each step a particle
makes a definite step left or right, or stays in the same position. These are not
interesting cases, but fortunately, non-trivial quantum walks can be easily de-
fined using only slightly more complicated operations. There are multiple ways
in which this could be done; here we present only the most straightforward
and extensible method, known as the “coined” quantum walk.

The walk is performed on the Hilbert space Hs ⊗ Hc, the tensor product
of Hilbert space Hs of discrete position states |n〉 with another 2-dimensional
space Hc labeled the coin space. We label a set of orthonormal basis vectors in
Hc as |−〉 and |+〉. Thus the coin space is equivalent to the particle having spin-
1
2
. Two unitary operations are then defined which are performed in succession

at each time step.

1. The “coin flip” operator C acts on Hc:

C |−〉 = a |−〉+ b |+〉 (4.8a)

C |+〉 = c |−〉+ d |+〉 (4.8b)

2. The “shift” operator S applies a conditional shift to the states |n〉 de-
pendent on the coin state:

S |n,−〉 = |n− 1,−〉 (4.9a)

S |n,+〉 = |n+ 1,+〉 (4.9b)

4.3. Quantum walks on a line 25

The evolution of the walk in one time step is thus given by U = S · (I ⊗ C).
The operator I ⊗ C indicates the identity operation on the position subspace
and the operation C on the coin subspace, and is unitary for any unitary C =(
a b
c d

)
. The operator S is also clearly unitary since it is norm preserving as it

merely exchanges the amplitudes associated with basis vectors. Accordingly
the evolution U is unitary as well.

The coin flip operator C may be specified by any unitary matrix. Standard
choices include the Hadamard transformation

H =
1√
2

(
1 1
1 −1

)
(4.10)

and the “balanced” coin

Y =
1√
2

(
1 i
i 1

)
. (4.11)

Both these operators exactly reproduce the classical random walk in the clas-
sical limit when projective measurement is applied after each set to collapse
the state |ψ〉 to a state with definite number |n〉, since any state specified
by |n〉 transitions to either |n− 1〉 or |n+ 1〉 with equal probability. Now
consider the evolution of an initial state |ψ〉 = |0,+〉 using the Hadamard
transformation H as the coin operator:

|ψ〉 → 1√
2
|−1,−〉 − 1√

2
|1,+〉 (4.12a)

→ 1

2
|−2,−〉 − 1

2
|0,−〉+

1

2
|0,+〉+

1

2
|2,+〉 (4.12b)

→ 1

2
√

2
|−3,−〉+

1

2
√

2
|−1,+〉+

1√
2
|−1,−〉 − 1

2
√

2
|1,−〉+

1

2
√

2
|3,+〉

(4.12c)

After the first two evolutions, the probability of measuring the particle at any
position remains the same as for a classical random walk. But on the third
application of U , positive moving amplitudes at n = 1 interfere destructively
simultaneously with constructive interference at n = −1. There is a probabil-
ity 5/8 of the particle being measured in the state |−1〉 but only a probability
1/8 at |1〉. Quantum effects have entered our random walk, and all future
evolution of the walk will show even more interference effects.

Graphs of the probability distribution of these walks initialized in the state
|ψ〉 = |0,−〉 as measured after T steps are shown in Figure 4.1. The Hadamard
matrix is real, but does not treat |−〉 and |+〉 state symmetrically and thus
leads to an asymmetric walk as shown when started in a state initially moving
strictly in one direction. The initial state |ψ〉 = |0,+〉 leads to the same
probability distribution reflected over the vertical axis, so the initial state
|ψ〉 = 1√

2
(|0,−〉+i |0,+〉) with the coin H leads to the symmetrical probability

distribution shown in Figure 4.2, since H has all real values, so the imaginary

26 Chapter 4. Quantum random walks

-500 -400 -300 -200 -100 0 100 200 300 400 500
N0.00

0.01

0.02

0.03

0.04
p

Figure 4.1: Probability of position measurement for the unbalanced 1D quan-
tum walk after T = 500 time steps. Only the probabilities for even N is shown
as p = 0 for all odd N . Generated by the coin operator H with initial state
|ψ〉 = |0,−〉. Initial state |ψ〉 = |0,+〉 generates the same graph reflected over
the vertical axis.

probability amplitude propagates independently from the real portion. The
“balanced” coin Y is so called because it leads to the exact same symmetrical
distribution even when starting in an unbalanced state such as |0,−〉.

These walks appear very different from their classical analogs. They do
not converge to a Gaussian or any other static distribution as t → ∞ and
have frequent amplitude oscillations due to self-interference. It should not be
surprising that the central limit theorem does not hold for quantum walks,
because unlike Markov chains, they are always reversible. In particular, it is
apparent and can be shown analytically [7] that the value is approximately
constant over the interval [− T√

2
, T√

2
]. Thus, to calculate the variance σ2, as

again 〈n〉 = 0,

σ2 = 〈n2〉 =
1

2T/
√

2

∫ T/
√

2

−T/
√

2

x2dx =
T 2

6
. (4.13)

Thus while the expected distance from the origin σ for the classical walk is
Θ(
√
T), for the quantum walk it is Θ(T). This is a quadratic improvement in

speed and is our first example of how a quantum walk propagates faster than
its classical analog.

The analytical proof for the only approximate probability distribution of
this walk is quite involved, but the result is easily evident from numerical sim-
ulations. Such simulations are easy to setup and evaluate. This is a recurring
theme in the analysis of quantum walks and suggests numerical simulation as

4.3. Quantum walks on a line 27

-500 -400 -300 -200 -100 0 100 200 300 400 500
N0.00

0.01

0.02

0.03

0.04
p

Figure 4.2: Probability of measurement at a position for the balanced 1D
quantum walk and the classical 1D walk. Likewise only the probabilities for
even N are shown. The classical walk is in the form of Gaussian, and the
quantum walk is approximately constant with quantum interference effects,
and is clearly spreading far faster than a Gaussian. The quantum walk was
generated using by the coin operator Y in initial state |ψ〉 = |0,−〉 or by H
with initial state |ψ〉 = 1√

2
(|0,−〉+ i |0,+〉).

28 Chapter 4. Quantum random walks

the primary method of attack for these problems. Once a result is obtained
numerically, then it may be well worth attempting to prove analytically.

4.4 Quantum walks on regular graphs

A quantum random walk like that on the line can be defined for arbitrary
undirected graphs by using different position and coin spaces. We first define
it for a regular graph, one with the same number of edges adjacent to each
vertex, and then extend it to an arbitrary graph. As with the quantum walk
on the line, we perform the walk on the tensor product of a position space
and a coin space Hs ⊗ Hc. Again, the position space has discrete values
corresponding to each node of the graph. Now the coin space is of dimension
n for the n paths out of each vertex, which are labeled by edges corresponding
to the path leaving a vertex. At each vertex, the edges are ordered by some
index i. Then this space is given by the set of adjacent vertex-edge pairs |v, i〉
as basis vectors, referring to vertices v and the adjacent edges with index i.
This is shown for an arbitrary regular graph in Fig. 4.3. In our quantum walk,
the particle no longer only be located at vertices, but now we can think of the
coin space as directly associated with edges on the graph, so the positions the
particle can occupy are at each adjacent vertex-edge pair.

1

2

3

2
1

3

32

1

1

1

1

2

3

3 2

2 3

a

b

c

d

e

f

Figure 4.3: A regular graph. The position space has letters a-f corresponding
to each vertex and numbers 1-3 corresponding to indexes for the edges at each
vertex.

The operator constituting a step of the random walk U is defined again by
the composite of a coinflip I ⊗ C and a shift S. The coin operator is again a
unitary operator on the subspace Hc, and the shift is defined by its action on
each basis vector,

S |v, i〉 = |v′, i′〉 , (4.14)

4.4. Quantum walks on regular graphs 29

where v′ is the other vertex attached to edge marked by i, and i′ is the labeling
for the index associated with the same edge marked by i. There are many ways
in which the index i may be ordered at each vertex. As in Fig. 4.3, it may be
chosen arbitrarily, but more generally, when possible, it is chosen in some way
that reflects the symmetry of the graph, or in which i and i′ may be labeled
the same. For instance on a square lattice, indexes �, �, � and � would be
chosen corresponding to the direction of each path.

In general, the coin operator C may also be chosen arbitrarily, but two such
choices are most common. The first such coin is the discrete Fourier transform
(DFT). Recall that the Fourier Transform X(f) is given by

X(f) =

∫ ∞
−∞

x(t)e−2πiftdt. (4.15)

Then the discrete Fourier transform ~X ∈ Cn performs the same transformation
as the Fourier Transform on the discrete set of n data points ~x ∈ Cn by

Xk =
1√
n

n−1∑
j=0

xje
−2πijk/n (4.16)

with the substitutions t→ j, dt→ 1 and f → k/n. The factor 1/
√
n in front

is a normalization constant so that ~x and ~X have the same length, making the
DFT transformation unitary, as can be easily verified. Then we can re-express
the DFT as mapping basis vectors |j〉 to |k〉 as with

|j〉 → 1√
n

n−1∑
k=0

e2πijk/n |k〉 , (4.17)

which in matrix form in the standard basis gives us,

DFT =
1√
n

1 1 1 · · · 1
1 γ γ2 · · · γn−1

1 γ2 γ4 · · · γ2(n−1)

...
...

...
. . .

...
1 γn−1 γ2(n−1) · · · γ(n−1)(n−1)

 , (4.18)

where γ = e2πi/n is the nth root of unity. It turns out that the DFT gate
can in general be constructed easily out of simple gates for use in a quantum
computer [23]. This gate makes it easy to find the periodicity of functions,
and is the basis of a whole family of quantum algorithms based off Shor’s
revolutionary algorithm for integer factorization in time O(poly) in contrast
to the best classical algorithm running in time O(exp). But this operation
is also remarkably useful for quantum walks. In some sense it is the natural
generalization of the Hadamard transformation (Eq. (4.10)), as the Hadamard
transform is the discrete Fourier transform with n = 2. In the classical limit

30 Chapter 4. Quantum random walks

this coin gives an equal probability of a transition from any state to any other,
since each matrix element has equal absolute value, and this operation is the
unique such choice, up to an irrelevant phase factor and permutation of the
rows and columns. This coin lets us exactly reproduce a random walk on a
graph with equal probability of moving along each edge from a vertex, but it
introduces phase differences dependent upon the path. These phases break the
symmetry of the original random walk, just as in the case of the Hadamard
coin H vs. the balanced coin Y (Eq. (4.11)), but for n > 2 there is not an
easy way to account for this lack of balance with a difference initial state.

The second coin of prominent use is an extension of the balanced coin Y .
It is also, perhaps not coincidently, an operation of central importance in the
other main family of quantum algorithms. Physically, a particle in a quantum
walk can be considered to be moving through the graph and scattering off a
vertex. If the coin matrix corresponds to a physical operation of scattering,
then the resulting amplitude distribution should respect the symmetry of the
interaction. So the balanced coin reflects the symmetry of a random walk on
a line in a way that the Hadamard coin does not by treating the transitions
from positive to negative moving particles and vice-versa symmetrically. These
are also the sort of coins that yield quantum walks corresponding to physical
process, such as discrete versions of the Schrodinger and Dirac equations. For
example, a quantum walk on a square lattice, on the basis {|�〉 , |�〉 , |�〉 , |�〉}
corresponding to shifts in the direction of the arrow, one would expect a coin
of the form

C =

a c b c
c a c b
b c a c
c b c a

 , (4.19)

as particles arriving in any direction at a vertex should have the same ampli-
tudes associated with reflection (a), transmission (b) or deflection to the left
or right at 90 degrees (c).

For a general graph without any additional structure, there is only one
feature that breaks the symmetry of the problem: the edge along which a
probability amplitude representing a particle arrives. Then coins respecting
this symmetry would be matrices of the form

C =

a b · · · b
b a · · · b
...

...
. . .

...
b b · · · a

 (4.20)

at each vertex, with some constant amplitude a for the diagonal elements and
b for the off-diagonal elements. The constant off-diagonal elements associate
the same amplitude with each possible edge change. Using the requirement

4.4. Quantum walks on regular graphs 31

that this matrix must be unitary, we can place restrictions on a and b. By the
orthonormality of the columns,

|a|2 + (n− 1)|b|2 = 1 (4.21a)

a∗b+ b∗a+ (n− 2)|b|2 = 0. (4.21b)

Let α = |a| and β = |b| be the magnitudes of a and b. Then action of the
coin will clearly only depend upon the phase difference ∆ between a and b as
any overall phase can be factored out of the matrix, and phase factors are not
measurable. Then as a∗b+ b∗a = 2αβ cos ∆, we have

α2 + (n− 1)β2 = 1 (4.22a)

2αβ cos ∆ + (n− 2)β2 = 0. (4.22b)

For n = 2, there are three solutions: the identity, the Pauli matrix σx and
symmetric coin Y from Eq. (4.11). Solving these equations for α and β yields
a continuum of solutions for n > 2. These are given by

α =

(
1 +

4(n− 1) cos ∆

(n− 2)2

)−1/2

(4.23a)

β =
2α cos ∆

n− 2
. (4.23b)

These solutions are shown graphically in Fig 4.4. As ∆ → π/2, that is as a
and b become orthogonal vectors in the complex plane, β → 0, so the coin is
some multiple of the identity. As ∆ → 0, a and b becomes parallel vectors,
yielding another solution that can be written as a real matrix (clearly a and
b will have to differ in sign). Making an arbitrary sign choice, the case ∆ = 0
simplifies to the diffusion operator G from Grover’s search algorithm,

G =

−1 + 2

n
2
n

· · · 2
n

2
n

−1 + 2
n
· · · 2

n
...

...
. . .

...
2
n

2
n

· · · −1 + 2
n

 , (4.24)

Α

Β

0 Π

8

Π

4

3 Π

8
Π

2

D0

0.5

1

Figure 4.4: Magnitudes of diagonal elements α and non-diagonal elements β
as a function of the phase difference ∆ with n = 5.

32 Chapter 4. Quantum random walks

which can also be written

G = −I + 2 |ψ〉〈ψ| , (4.25)

where |ψ〉 = 1√
n

∑n
i=0 |i〉 is the equal superposition over all states. This choice

of “Grover’s coin” ensures that amplitudes spreads through a quantum walk
at the maximum rate, as using the identity operator as a coin means that the
walk does not move at all. Clearly as n increases, all these solutions includ-
ing Grover’s coin tend strictly toward the identity operator, but this cannot
be avoided, and as it turns out, does not mean that this coin is necessarily
less powerful than the classical “fair” coin with equal transition probabilities.
On general graphs, in addition to being more physically realistic, these sorts
of coins are more likely to creating interesting quantum walks, as respecting
the symmetry of the graph allows quantum interference to yield non-classical
results. Another advantage of this particular coin is that the matrix has sub-
stantial symmetry that could make analytical analysis substantially easier.

Not surprisingly, these more general quantum walks share qualitative and
quantitative features with the quantum walk on the line. A simple example
is the quantum walk on a square lattice. Using Grover’s coin operator G and
associating the indexes at each vertex with shifts on the lattice up, down, left
and right, we obtain the symmetric picture shown in Fig. 4.5. Again, the walk
spreads much faster than a Gaussian and shows quantum interference effects.

Figure 4.5: Probability distribution for quantum walk on a 2D lattice. The
walk was generated using the coin G and run for 200 time steps. Only alternate
positions are shown as the others have zero probability. The axes run from -200
to 200. Generated (with permission) from a Maple script by Pemantle [25].

4.5 Walks on arbitrary undirected graphs

We can expand the definition of a random walk on any regular graph to undi-
rected graphs in general with ease. This can be done by now referring explicitly
to the set |v, e〉 of adjacent vertex edge pairs as the set of basis states, as shown

4.6. Quantum walks on quantum computers 33

a

109

87

6

5

4

3

2

1 g

f

e

d
c

b

Figure 4.6: A undirected graph. The set |v, e〉 has an element for each adjacent
vertex edge pair with vertices a-f and edges 1-10.

in Fig. 4.6. The indexes i are replaced by more specific edges e. Since there
may be different numbers of edges corresponding to a specific vertex, we can no
longer refer to the space on which the walk is performed in the separable form
Hs⊗Hc. Coin operators Cn with different dimensionality n are applied to the
subspace spanned by each vertex with a different number of adjacent edges.
These operators Cn can be any unitary operators such as the ones described
in the previous section. Instead of applying the coin operator I ⊗ C, we use
its natural generalization C ′, where C ′ is a new operator that can be written
in block diagonal form in a basis with the basis states ordered by vertex,

C ′ =

Cna

Cnb

Cnc

. . .

 , (4.26)

where each nv refers to the number of loops at vertex v. Then the unitary
walk step is given by U = S · C ′.

4.6 Quantum walks on quantum computers

Quantum walks are an interesting and beautiful exercise in mathematics but
they are also a tool that can be used for quantum algorithms. Just as classical
walks can be run efficiently on classical computers, so can quantum walks be
run efficiently on quantum computers. In fact, the proof of this second result
follows directly from the first. If a classical walk can be run efficiently on
a classical computer, then it is done so by some classical circuit defined in
terms of logic gates, with the addition of some random number generator as
input to a transition matrix. The circuit can be made reversible with only a
constant decrease in speed by use of the Toffoli gate, for instance, as detailed in
Sec. 3.4. A difference of any constant multiple is irrelevant because quantum

34 Chapter 4. Quantum random walks

|v〉 /

S

T

|e〉 / C

Figure 4.7: Quantum circuit implementation of a quantum walk on a regular
graph. The walk operation U is outlined by the box marked by T , to indicate
that the circuit inside is repeated sequentially T times. There are qubits
representing the vertices |v〉 and the edges |e〉, and the gates marked C and S
are the coin and shift operations.

and classical hardware will differ massively in speed and design anyways. Then
in place of using a stochastic transition between states, we place the “coin flip”
operator directly into the quantum circuit instead.

More concretely, we can also create a quantum circuit diagrams for an
arbitrary quantum walk that show directly how they could be implemented
on a quantum computer. Such a diagram is shown in Fig. 4.7. For simplicity,
it shows a quantum walk on a regular graph; the implementation of a general
undirected graph is similar, although it is harder to draw the circuit clearly.

Chapter 5

Quantum walk search

In previous chapters we have presented both random walk search based algo-
rithms for k-SAT and quantum random walks as a family of algorithms that
can be faster than classical random walks. The challenge discussed in this
chapter and the next is to find faster quantum versions of these randomized
algorithms.

5.1 Quantum search

Searching a database is a basic and essential task for computers. In the classical
world, finding a particular entry in an unsorted database of N items always
takes on average checkingN/2 entries. So classical database search runs in time
O(N). In contrast, Lov Grover’s search algorithm can search any unstructured
database by with only O(

√
N) queries of an Oracle f(x) [23]. This result is

remarkable because almost every important algorithm in classical computing
can be phrased as a search of some sort, even if it works as naively as by
checking every possible solution. The quadratic speedup offered by Grover’s
algorithm has been proved to be the best possible result for general search.

But real databases have their entries stored in physical media. It is far
easier to flip to the next page of this thesis than to head to the library and
check out another book, and it takes more effort to flip two pages than one
page. Moreover, information may be transmitted no faster than the speed
of light, and actual quantum circuits will take time to look up entries. So
as a new model, consider search of a database on a graph with one entry at
each point. Then instead of reading all entries simultaneously, we imagine a
“quantum robot” moving through the database in the form of operations that
can only be applied locally [8]. If this robot is running Grover’s algorithm,
it will take M times longer to run the search algorithm, where M is average
distance it needs to move between vertices. It still only requires only O(

√
N)

queries, but between each evaluation it takes M steps to move to the next
vertex. More precisely, the Oracle operation itself now takes O(M) steps to
evaluate. Then as a square grid of N elements has distance O(

√
N) between

36 Chapter 5. Quantum walk search

elements, running Grover’s search on this structured database in fact takes
order

√
N ×

√
N = N steps, no better than classical search [11].

Quantum walks resolve this issue by providing a means to perform local
search on structured databases often just as fast as Grover’s algorithm. The
quantum walk by analogy has robots as cellular automata stuck at each cell
who can only pass quantum states off to their neighbors. These search al-
gorithms are remarkably simple and have been implemented for a variety of
graphs reaching the theoretical limit of O(

√
N) performance or close to it

for many graphs. Aaronson and Ambainis have shown that for 3 or more
dimensions, quantum search on a grid can be performed in time O(

√
N), al-

though their best algorithm for search on the 2 dimensional lattice is in time

O
(√

N log3/2N
)

[2].

5.2 Binary hypercube search

Quantum walk search works on many graphs, but search on most graphs lacks
an algorithmic application. Recall the binary hypercube in n-dimensions, as
introduced in the discussion of satisfiable algorithms in Sec. 2.3. We can con-
sider this graph as a database with N = 2n entries. One vertex x0 chosen
arbitrarily is marked as the solution to our search. Classically, starting from
any initial vertex, it takes O(2n) steps until a solution is reached with high
probability. Since the maximum distance between any two vertices is M = n,
Grover’s algorithm could search the hypercube in O(n

√
2n) steps. The fol-

lowing algorithm, due to Shevi, Kempe and Whaley [28], performs the spatial
search in O(

√
2n) steps.

Since the hypercube is regular, we can choose a basis by the vertices and
an index keeping track of each edge. The set of basis vectors is of the form
|x, i〉 ∈ Hs ⊗ Hc, where each vertex is a string of bits x, and the indexes i
correspond to the ith variable being flipped between the two adjacent vertices.
In general, one arbitrary vertex x0 is marked as the solution. The algorithm
is given as follows:

1. The system is initialized in the equal superposition state 1√
n2n

∑
x,i |x, i〉,

as can be obtained by performing a Hadamard transform on each qubit
representing the space Hs and Hc.

2. The operation U = S · C ′ is applied for π
2

√
2n steps.

(a) At unmarked vertices, the coin C0 is used. At the marked vertex,
the coin C1 is used. Then the operation C ′ is given by

C ′ = I ⊗ C0 + |x0〉 〈x0| ⊗ (C1 − C0). (5.1)

Let C0 = G (Grover’s operator from Eq. (4.24)) and C1 = −I.

5.2. Binary hypercube search 37

0 20 40 60 80 100 120 140
T0.0

0.1

0.2

0.3

0.4

0.5
p

Figure 5.1: Probability of measurement at solution vs. time for quantum
walk search on the 8-dimensional hypercube. The probability of measurement
clearly builds up periodically, reaching a maximum after about 20 time steps.

(b) The shift operation S : |x, i〉 → |xi, i〉 is applied, where xi indicates
the bit string x with the ith bit flipped. This is the normal shift
operation.

3. Measurement is performed on the states |x〉. With some probability
1
2
− O(1/n), the state |x0〉 is measured, so by repeating this algorithm

some constant number of times we have the result with arbitrarily high
probability.

The proof of this result is quite non-trivial and is too involved to go into
here, but as with the classical 2-SAT algorithm it involves reducing this walk
over the hypercube to the line. The build up of probability at the solution is
illustrated in Fig. 5.1.

Numerically, the same speedup can be obtained for different arbitrary
choices of coins C0 and C1. Essentially the same procedure also works on
many other regular graphs such as a hexagonal grid or a cubic lattice. In
these symmetrical systems, we can understand these quantum walks working
as a search procedure because the marked coin C1 perturbs a symmetrical su-
perposition over all states of a symmetrical graph. Then the system can only
change in a manner that respects the symmetry of the quantum walk pro-
cedure. After waiting some appropriate number of repetitions, the position
of particle on the graph is measured. Each of these quantum random walks
perform search on graphs significantly faster than their classical counterparts,
although they do not beat the quadratic improvement offered by Grover’s
algorithm for unstructured search.

Since they are quantum walks, these structured quantum search algorithms
can also be implemented, of course, on a quantum computer. A quantum
circuit for the binary hypercube search algorithm using an Oracle function
f(x) is shown in Fig. 5.2. This Oracle function f(x) equals 1 if x = x0

38 Chapter 5. Quantum walk search

|c〉 c

x

Oracle

c⊕ f(x)

x

�������� • c

x

Oracle

c⊕ f(x)

x

T

|x〉 / H⊗n x

i

S

xi

i

NM

|i〉 / H⊗(logn) C0 C1

Figure 5.2: Quantum circuit implementation of binary hypercube search al-
gorithm. The control qubit |c〉 is initialized in the state |0〉 as are the qubits
referred to by the labels |x〉 and |i〉. The position states |x〉 are stored in a set
of n-qubits and the coin index |i〉 can without loss of generality be represented
by log n qubits since it needs to have n distinct states. The Oracle circuit
flips the value of |c〉 if x = x0 and is run again after the controlled operations
to reset the value of |c〉. The walk step U marked by the box is repeated
T = O(

√
2n) times.

and 0 otherwise, and is the standard way in which a particular element is
marked in quantum algorithms. Writing the Oracle as circuit element suggests
the approach we will use for satisfiability problems in which case the Oracle
function actually involves the evaluation of a circuit, the formula for the SAT
problem. The Oracle is in fact called twice for each iteration to reverse its
action on the control qubit, but again some reduction in speed by a constant
multiple is irrelevant in a broader sense.

5.3 Converting hypercube search to k-SAT

Our challenge now is to adapt this quantum search procedure to solve sat-
isfiability problems. However, there are a significant differences between the
hypercube search problem and the k-SAT random walk algorithms. The k-
SAT algorithms run on directed graphs with possibly redundant paths, on
a subset of the binary hypercube. It is also possible and common to have
multiple solutions. Furthermore, several steps in the procedure such as the
initialization step rely on the symmetric nature and known structure of the
graph at each vertex. None of these challenges is necessarily insurmountable
but a quantum version of this walk will clearly be far less trivial on the hy-
percube. As a general principle, even without proof or any particular reason,
we can safely assume that no altering of the graph in the process of making it
suitable for quantum walks would improve the speed of the classical algorithm,
or the approach would already have been taken. Under this principle, we will
consider two main approaches. The first is explained in the remainder of this
chapter and the second in Chapter 6.

5.3. Converting hypercube search to k-SAT 39

2

1

Figure 5.3: Methods for making a directed graph undirected. Method 1 re-
places each directed path with an undirected path and method 2 places undi-
rected paths along an edge equal to the larger of the number of paths in each
direction.

The easiest of these difficulties to resolve are redundant and missing paths.
Instead of using the quantum walk algorithm for a regular graph, we use gen-
eral algorithms that can use different size coins corresponding to any number
of edges at a vertex. This means that there needs to some sort of “edge Oracle”
in the quantum circuit that stores which edges are accessible to each vertex.

Whether the truth assignment indicated at a vertex is a solution is checked
by an Oracle function given by the classical circuit that would evaluate the
SAT formula. Then multiple solutions are not any additional trouble to mark
with a special coin. The trouble, as is obvious numerically, is that having
multiple solutions can very easily destroy the power of the marking coin since
they would vastly change the symmetry of the graph. One way to deal with
the possibility of multiple solutions is to ignore it by only testing formulas with
one solution. This corresponds to one heuristic for hard problem instances,
as discussed in Sec. 2.4. Classically, formulas with multiple solutions should
converge faster, and it is impossible to distinguish these cases a priori when
presented with an actual formula to solve. This approach is not entirely sat-
isfying, but even an algorithm for k-SAT that only works on these instances
could be notable.

The main remaining difficulty is the classical random walks proceeds on
directed graphs, but all of our quantum walk algorithms so far only work on
undirected graphs. There are two possible responses to this dilemma. We can
either adjust the graph in some way to make it undirected, or consider a very
different model based on some sort of “directed quantum walk.” This later
choice is the one made in Chapter 6.

Here we consider making the graph undirected, and again there are two
obvious choices: either (1) doubling up each directed path with a directed path
in the opposite direction, or (2) merely adding additional paths to an edge in
the direction with less paths, until the number of paths in each direction is
equal. These options are shown in Fig. 5.3. The later choice seems to be better

40 Chapter 5. Quantum walk search

for a two marginal reasons. First, it alters the classical algorithm less, as there
are less additional paths added into the graph, so the transition probabilities in
the classical limit would be altered by a lesser amount. Secondly, it would also
have marginally less significant resource requirements for implementation, both
on a quantum device and for simulating performance on a classical computer.
Nonetheless, we will look at both approaches.

Unfortunately, both of these approaches, and any based on an undirected
walk, would not work in the classical limit. This is because the random walk
SAT algorithms we have examined rely on solution vertices having no paths
out to trap random walk attempts there. When the graph is made undi-
rected, the structure does not force the particle to stay at potential solutions,
as undirected graphs always have the same number of edges in and out of
each vertex. It appears that our quantum search algorithms and the classical
structured search for SAT problems may rely on antithetical principles.

Still, we will evaluate the merit of this procedure experimentally. Now
that we have an undirected graph on which to perform a quantum walk, we
consider the walk using the general formalism for undirected walks discussed
in the previous chapter. Instead of using the same coins C0 and C1, we use the
coins of the same form scaled at each vertex to the number of attached edges.
We also need to initialize graph in some uniform state that is not dependent
upon the structure, as the walk possessing non-local knowledge of the location
of each path would require already having solved the problem. To do so, we
create an equal superposition at each vertex such that the probability of the
walk starting at each vertex is the same, even if the edges from distinct vertices
start with different values.

There is one major distinction with the choice of marking coins from the
hypercube search algorithm. In the original hypercube search, the coin C1 =
−G produces identical results to the coin C1 = −I. This is because the walk
is initialized in an entirely symmetric state, the amplitude on each vertex will
always be some multiple a of the equal superposition state |ψ〉. Then using
the form of G from Eq. (4.25),

−Ga |ψ〉 = −(−I + 2 |ψ〉〈ψ|)a |ψ〉 = a |ψ〉 , (5.2)

so the equal superposition |ψ〉 is an eigenvector of the operator −G with eigen-
value −1. Since the walk is initialized in this eigenstate, the operator has the
same action as the operator −I. In contrast, on these hypercube walks for
k-SAT, the symmetry of the graphs has been thrown off in some way. Accord-
ingly it is now possible that these two coin may result in different walks.

The full procedure for the algorithm is as follows:

1. Initialize walk in a uniform state equally likely to be at any vertex.

2. The operation U = S · C ′ is applied for t steps.

(a) Using an edge Oracle from the classical algorithm, record the edges
adjacent to each vertex from the classical walk.

5.4. Performance of probabilistic algorithms 41

(b) Combine marked directed edges into undirected edges, and count
their multiplicity both along every edge of the hypercube and at
each vertex.

(c) Using the solution Oracle, apply coins of the form C0 at unmarked
vertices, and C1 at vertices that represent a satisfying truth assign-
ment. These coins will of size as given by the multiplicity calculated
in the previous step.

(d) Then apply the shift operator S : |x, e〉 → |x′, e〉 where x′ is the
other vertex to which the edge e is assigned. This shift is dependent
upon the recorded multiplicities.

3. Measure the position of the particle in the quantum walk.

4. Evaluate the SAT formula with the truth assignment from the position
of the quantum walk with a classical circuit.

5. If the formula is unsatisfied and the quantum walk has been run less
than r times, go back to step 1.

This algorithm uses some classical steps, but a quantum walk is used for the
random walk procedure. As with the classical algorithms, it only completes if
there is no satisfying truth assignment, but unlike the classical procedure, it
cannot stop in the middle of the random walk procedure if it reaches the solu-
tion. If after evaluating the quantum walk r times for t steps each (time T = rt
in total) no satisfying assignment has been found, the algorithm should ter-
minate stating that the formula is unsatisfying with some probability greater
than 1− ε, where ε is some maximum error rate. These counts r and t remain
undetermined but will be evaluated numerically once we know how the prob-
ability of the quantum walk succeeding varies over time so that the total time
the algorithm takes to run is minimized.

In principle, we can create a quantum circuit to run this algorithm only
using at most kmn = O(n2) qubits to store the associated edges assignments.
This is possible since each of n variables may only appear unsatisfied in at most
km literals for any truth assignment. Also in principle, this walk could be im-
plemented with only at most some constant decrease in speed and increase in
storage requirements associated with making each operation reversible. We
omit actually drawing a full quantum circuit implementation for this algo-
rithm, as it would be quite complicated and unilluminating with making re-
versible some non-trivial operations such as those involved with counting the
multiplicities of edges, especially when making the graph undirected.

5.4 Performance of probabilistic algorithms

To determine whether this search procedure works and to evaluate its perfor-
mance, we need to be able to guess a time at which there is a high probability

42 Chapter 5. Quantum walk search

of measuring the walk at the solution. As with the original hypercube search,
we expect the probability p of measuring the particle at the solution to build
periodically. But as with the classical 3-SAT algorithm, running the walk
reinitialized r times could be faster than only letting the same walk run once
for a longer time. Subject to some upper bound ε on the probability of failing
to categorize a SAT formula as satisfiable, we would like to minimize the total
run time T = rt as a function of the probability p(t) that a satisfiable formula
is measured at a satisfying truth assignment after t steps of each random walk.
This will give us optimal choices of n and t, but in particular, we expect that
the cutoff time tc of “maximum returns” will be independent of ε as ε → 0.
This would match the result obtained for the classical 3-SAT algorithm in
Chapter 2 of t = 3n.

This algorithm terminates in the case that the formula is satisfiable upon
the quantum walk successfully returning a satisfying truth assignment. The
probability in one evaluation of the quantum walk of returning a non-satisfying
truth assignment is 1− p(t). Then the probability Pr(F) of failing to return a
satisfying truth assignment each of r times is given by

Pr(F) = [1− p(t)]r , (5.3)

as each trial is independent. Using the result T = rt, we would like to minimize
the total time T given that the probability of failure is less than some upper
bound ε. Excluding the trivial case t = 0, we have the constraint

[1− p(t)]T/t ≤ ε, (5.4)

which will be minimized in the case of equality. Simple algebraic manipulation
shows that the total time T is given in terms of ε and t by

T (t) =
t log ε

log [1− p(t)]
, (5.5)

which should be minimized as a function of t to find the optimal number of
steps tc for which to run each iteration of the walk. This equation allows
easy determination of tc from values of p(t) obtained from simulation for some
finite number of steps, and holds for any probabilistic algorithm for k-SAT of
this design. Further, as is appropriate, this minimal value tc is independent
of ε as log ε is a constant factor. Thus we can calculate the absolute time
requirements for all k-SAT algorithms using Eq. (5.5) for any arbitrary choice
of ε, so we choose ε = 1/e so that log ε = −1.

5.5 Quantum search on 2-SAT

We used the result of the previous section to numerically evaluate the perfor-
mance of these adapted quantum search algorithms on 2-SAT. As a general

5.5. Quantum search on 2-SAT 43

procedure, we simulated the performance of these quantum walk search al-
gorithms for 2-SAT for a number of formulas with n variables as chosen at
random at the phase transition, as described in Sec. 2.4. We chose to try
algorithms on 2-SAT first, both because classically it is an easier problem, and
because it would be easier to simulate such algorithms for 2-SAT as well. This
is because the difficulty of simulating a quantum walk scales with the number
of states in the corresponding basis, and hard 2-SAT formulas have about 4
times fewer clauses than with 3-SAT formulas and a correspondingly smaller
number of edges on their graphs.

We simulated the probability of measuring the walk at a satisfying truth
assignment as a function of the time for which it was allowed to evolve undis-
turbed, and found the time t that minimized the total time T for each individ-
ual SAT formula. We also found the time tc that minimized the time required
to evaluate most SAT instances by minimizing the quantity

〈T 〉+ cσT , (5.6)

as a function of t, where c is some small constant (we chose 2), and σT is the
standard deviation of T , used so that nearly all SAT instances will converge
in the appropriate time. Then we considered the resulting total time T for
each SAT formula using tc, so that the algorithm would be likely to correctly
classify each SAT formula as satisfiable. This procedure optimizes for the best
candidate algorithm using the procedure from the previous section, with time
t = tc.

As shown in Fig. 5.4, on general 2-SAT instances at the phase transition,
the walk performs abysmally. The total time required is exponential and far
above the time required for the classical walk. The only consolation is that
at least this algorithm performs better than the most naive, blind guess algo-
rithm. Also as it turns out, our guess that −G and −I might have significantly
different performance turned out to be unfounded. As these marking coins
yielded almost completely identical performance, all results are all shown for
clarity only using −I as the marking coin. Fig. 5.5 shows another distinct
effect, that the quantum walk performs worse on those 2-SAT formulas with
the most satisfying truth assignments, exactly opposite the performance for
the classical walk.

This performance leads us to consider how well this algorithm works strictly
on formulas with only one solution. For these problems, we have another algo-
rithm that provides a baseline comparison—the original quantum hypercube
search. Unfortunately, as Fig. 5.6 shows, our modified algorithm actually per-
forms worse than the straightforward hypercube search. The performance gap
is small, suggesting that the process of making the graph undirected made the
walk equivalent to a slight random perturbation of the hypercube search. This
is similar to numerical results obtained by Krovi and Brun [18] for quantum
search for a single element on hypercubes with minor a distortion formed by
swapping paths such that the number of edges at each vertex remains con-

44 Chapter 5. Quantum walk search

5
6

10

2

3

4
5
6

100

2

3

4
5
6

1000

T
ot

al
 ti

m
e

(T
)

10987654
n

Figure 5.4: Scaled time requirement to solve 2-SAT formulas by quantum
walk search. These values were determined from Eq. (5.5) using p(t) as ob-
tained numerically sampled over 100 formulas chosen at the phase transition.
The classical run time from Eq. (5.5) is given by the green line that is a lower
bound, and the thick black line above shows the performance from blind guess-
ing. The dashed line shows the performance of the walk on the graph modified
by method 1, and the solid line shows it with method 2. Note that the scal-
ing of the graph is logarithmic, indicating that the quantum algorithms are
exponentially slow and overwhelmingly slower than the classical algorithms.

stant. This means that these algorithms run in time slower than O(2n/2), no
improvement over the classical speed of O(n2).

Although it is interesting that these perturbed hypercube walk procedures
still yielded quantum search procedures that worked, these search algorithms
clearly did not respect enough of the structure of the 2-SAT problem to yield
any algorithmic advantage. This suggests approaches based on directed quan-
tum walks that may be able to preserve the structure of the problem, as are
examined in the following chapter.

5.5. Quantum search on 2-SAT 45

500

400

300

200

100

0

M
in

im
al

 to
ta

l t
im

e
(T

)

2520151050
Number of solutions

Figure 5.5: Minimal time required to solve 2-SAT formulas by quantum walk
search vs. the number of satisfying truth assignments. The size of each dia-
mond indicates the multiplicity at each point. These values were determined
from Eq. (5.5) directly for each individual formula, and were taken from the
data used to generated Fig. 5.4 with n = 10, so these formulas were at the
phase transition. This plot clearly shows a strong correlation exactly opposite
that of the classical algorithm: the presence of additional solutions makes the
algorithm slower. Since these SAT formulas were also randomly generated at
the phase transition, it shows that in general we cannot expect these formulas
to only have a few solutions.

46 Chapter 5. Quantum walk search

7

8
9

10

2

3

4

5

6

7

8
9

100

T
ot

al
 ti

m
e

(T
)

1210864
n

Figure 5.6: Scaled time requirement to solve 2-SAT formulas with one solu-
tion by quantum walk search. These values were determined from Eq. (5.5)
using p(t) as obtained numerically sampled over 100 formulas with one solu-
tion chosen at the phase transition for n = 4 . . . 10, and 20 formulas each for
n = 11, 12. The classical run time from Eq. (5.5) is given by the green line
that is a lower bound. The thick line above shows the speed of the binary
hypercube search. The dashed line shows the performance of the walk on the
graph modified by method 1, and the solid line shows it with method 2. The
same logarithmic scale is shown here as in Fig. 5.4. This graph clearly shows
that when there is only one solution, the classical algorithm is slower and the
quantum algorithms are faster. However, in each case using the unmodified
quantum hypercube search procedure would have been faster than using the
variation we developed.

Chapter 6

Directed quantum walks

6.1 Defining a directed walk

Classically, it is easy to perform any random walk with directed paths. Find-
ing quantum directed walks for arbitrary directed walks is tricker. To get a
sense of the difficulty involved, we will examine walks on the two trivial graphs
shown below:

3 1
2

3

2

1

If the paths at a vertex for the first graph are selected uniformly at random,
then the transition matrix is given by something like

M =

1 1 0
0 0 1/2
0 0 1/2

 (6.1)

where the path goes from the 1 to the 0 state. Finding a quantum version of
this walk seems almost certainly hopeless. There is no way a unitary matrix
can have this transition matrix as its classical limit. In contrast, consider the
three cycle graph with three vertices, each with an edge pointing to the next.
Its transition matrix looks like

M =

0 0 1
1 0 0
0 1 0

 (6.2)

which in fact is already a unitary matrix, too. So some random walks can be
easily made quantum, and some cannot.

The constraint that a graph is Eulerian is sufficient for performing a quan-
tum walk. A directed graph is Eulerian if each vertex has the same number

48 Chapter 6. Directed quantum walks

a b c · · ·
a b c · · ·
a b c · · ·
...

...
...

. . .

Figure 6.1: No matrix of this form is unitary.

of edges in and out, as in our second example. If we want to have some uni-
tary map that reassigns the amplitudes associated with n incoming edges |ein〉
at a vertex then clearly we must reassign them to n outgoing edges |eout〉,
as unitary matrices are square. If we identify as a basis each directed edge,
then a directed quantum walk can be written in similar form to the general
undirected walk as

U = S · C ′, (6.3)

where C ′ is a coin flip operator as before and the shift operator S directly maps
directed edges to an assigned next edge. In the undirected walk, there is an
obvious next edge that does not break the symmetry of the operation: the edge
that was just traversed in the opposite direction, but no such convenient choice
exists for directed walks. This means that Grover’s operator G is no longer
a preferred coin operation, as we do not want any probability of returning
to the same state at all, so the symmetry must be broken for transition to
an arbitrary new edge. Accordingly the pairing of incoming and outgoing
edges from each vertex could have a significant effect on the characteristics
of a walk. There is no way to eliminate this symmetry breaking through a
convenient choice of operation, as transition matrices that associate the same
amplitude to each output cannot be unitary, as shown in Fig. 6.1. At best,
we can pair incoming and outgoing edges at a vertex by some natural pairing
that reflects the symmetry of the graph or the problem it is trying to solve.

The question of what directed graphs can be made quantum in general has
been the focus of several papers [20, 27]. Specifically, the constraint known
as reversibility has been shown to be necessary and sufficient for defining a
quantum walk on a direct graph [20]. The reversibility requirement is that
if there an edge from a → b, there must also be some path from b back to
a. But when quantum walks are defined on arbitrary reversible graphs, the
transition probabilities in the classical limit to do not necessarily match that
for the original graph. This fails in the objective of preserving the classical
algorithmic properties of the graph. Further, the proof of this result relies
upon the ability to use cycles through the graph in creating the coin space.
This is entirely useless when the entire point of the algorithm is to understand
the global nature of the graph.

These directed walks still only work on a quite limited subset of graphs,
but they are a substantial increase over the set of undirected graphs. We will

6.2. Directed walk on the line with loops 49

return to the task of generalizing quantum walks to any graph in Sec. 6.4 after
seeing how far the use of Eulerian graphs can take us.

6.2 Directed walk on the line with loops

Before we proceed further with directed quantum walks, it is instructive to
consider an example to demonstrate that they hold potential similar to that
seen for undirected quantum walks. This was actually fairly difficult to find,
because easy to visualize classical directed walks are already generally so fast.
For instance, when propagating along a line, even if there is only some small
probability p of moving forward, the expected position of the classical walk
after T steps is pT . But the maximum speed for any conceivable quantum
walk is T , since in each step we require that the walk operation be local. Both
already cover the distance T in O(T) time, so there is no room for meaningful
quantum speedup. This is true for other regular repeating graphs, as well,
in cases where undirected walks can spread quadratically faster. There is no
room for directed walks to spread faster.

Fortunately, these cases of directed walks are not very interesting for algo-
rithmic purposes, either, because the graphs can already be traversed in linear
time. It does mean, however, that we will need a new way to show quantum
speedup. A natural candidate is some measure of the complexity of the graph,
the number of paths that would move a particle closer to the solution instead
of remaining at the same distance or moving further away. Then we could hope
to show improved speed as the graph gets more complicated and a classical
walk would slow down.

Accordingly, we present a novel example of a toy directed quantum walk
that shows remarkable quantum speedup. Consider the directed random walk
along the line with n − 1 self-loops at each vertex, as shown in Fig. 6.2. We
can alternatively consider these self-loops at each vertex as additional small
dimensions providing extra space for the walk to slow down. The classical
speed of the walk can be easily scaled by adjusting n. At each vertex there
is a probability 1/n of moving to the next vertex, so the expected position
propagates a distance T/n in time T . Thus the classical walk proceeds in time
Θ(1/n).

In the quantum version of this walk, we initialize the state at a posi-
tion along the line and apply the n dimensional discrete Fourier transform
(Eq. (4.18)) as the local coin operation at each vertex. We pair incoming and

 loops{1n

Figure 6.2: Directed walk on the line with n− 1 self-loops at each vertex.

50 Chapter 6. Directed quantum walks

50x10
-3

40

30

20

10

0

p

5004003002001000
x

n=2

n=5

n=10

n=2n=5n=10

Figure 6.3: Classical vs. quantum directed walks with loops after 500 time
steps, for increasing number of loops n. The classical walks are those with the
Gaussian shape and the quantum walks are those exhibiting the characteris-
tic interference pattern. The classical proceed on average a distance 500/n,
whereas the quantum walks converge to proceeding a constant distance.

outgoing edges in the only non-symmetry breaking manner, by associating self-
loops with themselves and pairing the incoming and outgoing paths along the
line. Starting in a definite state at one edge along the line, numerical results
show that as n → ∞, the expected position of this walk propagates T steps
forward in time T/2, independent of n. This is in time Θ(1). Superimposed
pictures of the walk after 100 steps for increasing n are shown in Fig. 6.3. The
speed of the walk over time is shown in Fig. 6.4 clearly converging to 1/2 step
forward per time step. The speed of this walk has been verified numerically
for up to n = 1000.

This walk proceeds quickly by strongly exploiting the symmetry of its
setup. We can understand how it works by considering the effects of the
discrete Fourier transform in two steps. Starting with the |0〉 state, it is trans-
formed to the equal superposition

|ψ〉 =
1√
n

(|0〉+ |1〉+ . . .+ |n− 1〉).

The inverse discrete Fourier transform is given by

|j〉 → 1√
n

n−1∑
k=0

e−2πijk/n |k〉 , (6.4)

6.2. Directed walk on the line with loops 51

1.0

0.8

0.6

0.4

0.2

0.0

dx
ax

g
/d

t

5004003002001000
t

n=2
n=5

n=10

Figure 6.4: d〈x〉/dt as a function of n and T for the directed walk on the line
with loops. The descending lines are at greater n.

which if applied would return the state of the walk to |0〉. Then we may as
well specify the inverse discrete Fourier transform of |ψ〉 by the requirement

|j〉 → 1√
n
|0〉 .

But the amplitude mapped to the state |0〉 by the direct discrete Fourier
transform is exactly the same. Accordingly on |ψ〉, both the DFT and its
inverse have the same action. Thus after a second time step, the system is
returned to the |0〉 state. To a good approximation, this is exactly the action
of the unitary time step operation in our directed quantum walk, except the
amplitude associated with the state |0〉 after the first step is sent on to the
next vertex. As n → ∞, the amplitude associated with |0〉 in this first step
goes to zero, so the approximation becomes precise, and after 2 time steps the
particle proceeds forward one step.

The speed of this walk depends highly on the symmetric association of
incoming and outgoing edges. If these edges are paired randomly at each
vertex, the quantum walk slows down to the classical speed. Accordingly
the walk needs to have some local sense of where the solution is in order to
proceed faster. This makes the improvement in speed less remarkable, as of
course the classical walk could proceed much faster, too, if it knew the way to
the solution.

Numerical investigations have shown that similar results seem to hold even
when the loops are made into finite dimensions. These are the first results to
suggest that quantum walks on directed graphs may yield useful quantum

52 Chapter 6. Directed quantum walks

algorithms, and suggest that this approach may have merit, although the
speedup we have found is different and perhaps harder to obtain than that
with undirected quantum walks.

6.3 Returning to k-SAT

Of course, the graphs from k-SAT problems are not necessarily Eulerian, so
we cannot yet run a directed walk on them. Reflecting the difficulty of SAT,
there are no nice restrictions on the number of edges in and out of each ver-
tex on graphs corresponding to SAT formulas. Along the lines developed in
Chapter 5, a natural first thought is to create some sort of edge Oracle that
conditionally fixes the graph by adding in additional directed edges as neces-
sary to make them Eulerian. But such a procedure is not helpful here, because
adding edges to fix the graph at each vertex simultaneously would not fix the
graph in one step. The fix of adding an new edge to or away from one vertex
would throw off the count of in and out edges at the adjacent vertex. Any
quantum walk search algorithm needs to be local, as querying the entire graph
to fix it up is equivalent to solving the problem directly. Even worse, there is
no way for probability to build up at solutions if there are paths leaving them,
so the idea of conserving the number of paths in and out of every vertex is
doomed at those vertices representing solutions. With this conundrum, we are
left to consider the options for non-unitary quantum walk operations.

6.4 General quantum operations

Recall that the statistical ensemble of state vectors |ψi〉 with probabilities pi
is described by a density operator ρ given by

ρ =
∑
i

pi |ψi〉〈ψi| . (6.5)

An ensemble of density operators ρi with probabilities pi is given by
∑

i piρi.
Density operators in general are the set of positive semi-definite matrices with
trace 1. Pure states are the set of density operator that can be represented
exactly as a single state vector |ψ〉, that is, if a density operator has one
non-zero eigenvalue. States that are not pure are called mixed and represent
classical ensembles of pure states. We evolve the state ρ by an operation E in
the usual fashion by the use of a unitary operator U such that

E(ρ) = UρU †. (6.6)

These unitary operators classify the full range of quantum transitions in closed
systems without measurement.

But this is not the full range of manners in which one quantum state may
be mapped onto another. Consider a quantum black box that maps arbitrary

6.4. General quantum operations 53

quantum systems using physical processes. Inside, it can store any sort of
ancillary quantum systems, to which we can apply a joint operation with our
system of interest. The black box lets out another quantum system, but it must
not necessarily even have the same size as the original system. For example,
it could take two qubits as input and throw away one, only outputting the
remaining qubit. It turns out that in general we can express any such black
box E , termed a general quantum operation or super operator, as

E(ρ) =
∑
i

EiρE
†
i , (6.7)

where {Ei} is any set of complex matrices satisfying∑
i

E†iEi ≤ I, (6.8)

where the ≤ sign indicates that I −
∑

iE
†
iEi must be a positive-semidefinite

operator. For an operator from an n dimensional state to an m dimensional
state, only at most mn operator elements Ei are needed to describe it. Also,
just as a combination of pure states is not uniquely specified by a density
operator, a set of operator elements is not uniquely specified by an quantum
operation.

This formalism is most commonly used to rigorously describe the phe-
nomena of decoherence, as quantum systems become classical due to noise.
Using non-unitary operators E in quantum algorithms does not give space for
new quantum phenomena, but allows us to make algorithms more classical in
a controlled and limited way. This suggests a strategy for extending directed
quantum walks to general graphs in a manner in which they may still maintain
some of their quantum properties.

It can be shown that Eq. (6.7) and (6.8) are a complete classification of all
operators arising from the restrictions imposed by the following set of physical
principles [23]:

1. Tr E(ρ) ≤ 1, where the equality is strict unless the process is explicitly
dependent upon the results of measurement. This inequality corresponds
to the inequality in Eq. (6.8).

2. Applying the operation separately to a set of quantum states which are
then mixed together should be equivalent to applying the operation to
the states combined first:

E

(∑
i

piρi

)
=
∑
i

piE(ρi). (6.9)

3. If we consider ρ as part of any other quantum state described by a density
operator, the final state should still be a density operator. This means
that the operator I ⊗ E should also map density operators to density
operators, where I is the identity operator on any finite size space.

54 Chapter 6. Directed quantum walks

ρ
n

U

m
E(ρ)

|0〉〈0|
m2 mn

discarded

Figure 6.5: General quantum operations as unitary evolution of the system of
interest and an environmental system. The numbers above the lines indicate
the dimensionality of the quantum systems being manipulated.

When not dependent upon measurement results, these operators can also
be described by a unitary operator acting on the combined system. Given a
general quantum operation E , we can describe its action by a unitary matrix U
acting on ρ⊗|0〉〈0|, where |0〉〈0| is a label associated with some environmental
system in its initial state, and then discarding all but some m dimensional
state. We can explicitly write U acting on the pure state |0〉 ⊗ |ψ〉 as

U =

[E1] . . .
[E2] . . .

... . . .
[Emn] . . .

 , (6.10)

where the Ei are a set of operator element corresponding to the operator and
all but the first block column is filled in arbitrarily to make the matrix uni-
tary. Each operator Ei corresponds to a particular basis state |ei〉 in the final
environmental system. Then discarding this environment corresponds to mea-
suring all states by |ei〉, obtaining the states 1√

pi
Ei |ψ〉 each with probability

pi = 〈ψ|E†iEi |ψ〉. Schematically, this corresponds to the quantum circuit
shown in Fig. 6.5. Since the density matrix for this new state is∑

i

Ei |ψ〉〈ψ|E†i , (6.11)

and we can write any density matrix as a sum of pure states, this procedure
corresponds exactly to the operation E .

This picture of general quantum operations is significant for two reasons.
First of all, it shows that they can be specified by a unitary operation and
adding only at most a certain number of temporary ancillary qubits. It
demonstrates that in principle using such a general operation instead of a
unitary transformation does not increase the permanent spatial requirements
of a quantum algorithm and nor change the order of its run time.

Secondly, this result establishes shows that we can classically simulate
quantum algorithms involving general quantum operations without revert-
ing to the density matrix formalism. Simulating a quantum system in the
density matrix formalism instead of with state vectors increases the memory
requirements by a quadratic factor and increases the calculation requirements
just as much. The simulation requirements to exactly calculate transitions of

6.5. Directed quantum walks on any graph 55

general quantum operators with density matrices could be even worse, since
unlike unitary operators acting on independent subspaces, general quantum
operations cannot be easily separated. Accordingly applying non-trivial gen-
eral operations to density operators would involve exponentially larger matrix
multiplication when simulating systems like quantum walks. By using quan-
tum Monte-Carlo simulation with state vectors, we can model these algorithms
far faster than from exact evaluation using density operators.

6.5 Directed quantum walks on any graph

We can now can write a quantum walk for any directed graph. Writing a single
step of the walk as the composition of a shift and coin operation again, we
have

U = S ′ ◦ C ′, (6.12)

where U is no longer necessarily unitary. The coin C ′ is of the form for general
undirected graphs, but the shift S ′ must incorporates possibly changing the size
of the spaces at each vertices, and thus must include some non-trivial general
quantum operation. It also includes an explicit step pairing the possibly size
changed amplitudes at a vertex with outgoing edges. In general, we can break
down S ′ into the direct sum of shifts that happen at each vertex. At each
vertex, there are n edges in and m edges out, leaving three possible cases. If
n = m, then we can apply straightforward permutation, a unitary operation.
If n < m, then we can also apply permutation, by classically choosing the
vertices to be shifted onto at random. The hard case is for n > m, because
then we need to somehow over-compress quantum states onto a smaller space.
In general, we know this is not possible with perfect fidelity for arbitrary pure
states, because quantum operations must be linear, and there are no invertible
linear maps from a space of higher to lower dimensionality. At best, we can
hope to compress the state in such a way that only some minimal amount of
information is lost.

We now consider such choices of “over-compressing” operations in the case
that there are more paths in n than out m. One of the easiest such operators
to devise is to create an equal classical superposition of all outgoing states
each time it is applied. This operation has operator elements given by

Eij =
1√
m
|j〉〈i| . (6.13)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. We can easily verify

∑
i,j

E†ijEij =
1

m

∑
i,j

|i〉〈j|j〉〈i| =
n∑
i=1

|i〉〈i| = I, (6.14)

56 Chapter 6. Directed quantum walks

as required by Eq. (6.8). Then its action on a state ρ is given by∑
i,j

EijρE
†
ij =

1

m

∑
i,j

|j〉〈i|ρ|i〉〈j| (6.15)

=
1

m

n∑
i=1

〈i|ρ|i〉
m∑
j=1

|j〉〈j| (6.16)

=
1

m
Tr(ρ)I (6.17)

= I/m, (6.18)

which is exactly the classical superposition of the states |j〉 with probability
1/m each. But classical superpositions do not provide room for quantum
interference, so this is a poor candidate for our shift operation.

A more sophisticated transition operator picks m input states at random
and maps them to output states, discarding n − m states. This operator is
given by operator elements

Ei =
1√
m
n

(
n
m

) m∑
j=1

|j〉〈ij| , (6.19)

where |ij〉 indicates the jth basis vector from the ith choice of m out of n basis
vectors for the input space. We can verify

∑
i∈C

E†iEi =
n/m(
n
m

) ∑
i∈C

m∑
j=1

|ij〉〈j|j〉〈ij| =
n/m(
n
m

) ∑
i∈C

m∑
j=1

|ij〉〈ij| = I, (6.20)

where C is the set of m choices of n, as on average each sum
∑m

j=1 |ij〉〈ij|
contributes m

n
I and there are

(
n
m

)
choices, so this is a general quantum opera-

tion. To get some limited sense of how this operator acts, consider its action
reducing an arbitrary state in 3 dimensions to 2 dimensions,a b c

e f g
h j k

→ (
a+ 1

2
f 1

2
(b+ c+ g)

1
2
(e+ h+ j) 1

2
f + k

)
. (6.21)

In some sense the matrix elements of this resulting state look similar to the
original. More broadly, it is hard to understand what this operator does, but
at least its transitions clearly remain significantly quantum mechanical.

6.6 Quantum directed walks on 2-SAT

In the full procedure, we start the directed quantum walk in an initial state
at an equal superposition of being at each vertex. Then we use a standard
coin operator C ′ and a shift operator including one of the over-compression

6.7. Conclusions 57

operators as given by Eq. (6.13) or Eq. (6.19). As we have no heuristic to pair
in and out edges at any vertex, we resort choosing random pairings with the
shift operation.

Unfortunately, when averaged over a sufficiently large number of runs,
numerical results show that the average probability of any quantum walk con-
verging to a solution after running the walk for any time t is exactly equal
to the probability from simulating the classical walk with a Markov chain.
Although the first transition operator is almost entirely useless, keeping the
pairing between in and out edges at some random constant assignment over
the course of quantum walk yields varied results at least for the second opera-
tor. But on average for every 2-SAT formula the performance of the classical
and quantum walks are identically the same. By pairing in and out vertices
randomly, we seem to have averaged over all quantum interference effects such
that they are entirely unnoticeable.

6.7 Conclusions

Quantum random walks provide a simple model of quantum systems that em-
phasize the profound power of quantum interference. Constructive interference
allows probability to build up faster in quantum walks than can be done clas-
sically. Intuitively, it is clear that in order for interference to build up in a
manner that reflects the symmetry of a particular problem, the quantum walk
itself must as much as possible reflect that symmetry. The examples of quan-
tum walks we have discussed that are successfully faster than their classical
versions respect most of the symmetry of the underlying graph obtained from
the classical version, and this is an observation also consistent more generally
with the most powerful quantum walks [18]. Our failure to find a way to re-
spect symmetry when approaching SAT with directed quantum walks explains
why these algorithms were not successful.

In our work with directed walks, we may also have been moving too fast in
our attempts to solve satisfiability problems. We provided the first demonstra-
tion of the power of directed quantum walks (Sec. 6.2) and then immediately
attempted to solve the very hard problem of satisfiability. Careful intermedi-
ate work would warranted, using directed quantum walks to solve more toy
problems with intrinsically more accessible symmetry. A good starting point
for further investigations would be to attempt to find more examples of use-
ful quantum versions of directed walks on the hypercube or other structures
with similarities to the graphs used in satisfiability problems, in a manner that
is not as ambitious as attacking SAT directly. As it turns out, satisfiability
problems may simply not have sufficient symmetry to be exploited by quan-
tum walks, but further investigations toward these conclusions could still yield
other useful insights.

In fact, hoping to spur these other insights was always the primary moti-
vation for this work, as ironically a quantum algorithm for 3-SAT better than

58 Chapter 6. Directed quantum walks

any classical algorithm already exists. It is essentially the best probabilistic
algorithm for 3-SAT plugged directly into Grover’s algorithm, which can make
any algorithm that succeeds with bounded probability run in the square root
of the time [6]. One might wonder in that case why we even looked for an
improvement that could be expected at best to only match that performance,
but even solving 3-SAT is only relevant because of its connection to a bigger
classes of problems. The most important aspect of this work is the guidance
it yields toward future quantum random walk based algorithms for problems
that may not have such easy shortcuts, and, in a pinch, that guidance could
be summarized in one word and essential concept: symmetry.

Acknowledgments

First and foremost, I would like to thank my research adviser last summer,
David Meyer, under whom I performed most of this research. He introduced
me to quantum computing and quantum walks, and was extremely helpful in
guiding my research and providing feedback on this thesis.

I had a tremendously fun summer doing physics at UCSD thanks to my
companions in the REU program. The comments and feedback from the fellow
students in David’s group were also hugely helpful, especially from Yi-Kai Liu
who gave me some useful pointers on satisfiability problems. I would also like
to thank my friend Eric Christiansen for convincing me to program in Python
and for his (futile) attempts to understand quantum mechanics.

I am indebted to the UCSD Mathematics department Computing Support,
which lent me a laptop when my own was stolen three weeks before the end
of my work. For that matter, I can also thank the coincidence that I backed
up all my work to a server only two days before.

Finally, I am grateful to my thesis readers at Swarthmore, John Boccio
and Amy Bug, for reading this thesis with a critical eye even though it was
outside their specialty, and also the entire physics department at Swarthmore
for giving me a fantastic education.

This research was funded mostly by the NSF under the 2007 REU program
at the University of California San Diego.

References

[1] Scott Aaronson. The limits of quantum computers. Scientific American,
298(3):62, Mar 2008.

[2] Scott Aaronson and Andris Ambainis. Quantum search of spatial regions.
In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on the
Foundations of Computer Science, page 200, 2003.

[3] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani.
Quantum walks on graphs. In STOC ’01: Proceedings of the 33rd An-
nual ACM Symposium on Theory of Computing, pages 50–59, July 2001,
arXiv:quant-ph/0012090.

[4] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks.
Phys. Rev. A, 48(2):1687–1690, Aug 1993.

[5] Andris Ambainis. Quantum walks and their algorithmic applica-
tions. International Journal of Quantum Information, 1:507–518, 2003,
arXiv:quant-ph/0403120.

[6] Andris Ambainis. Quantum search algorithms. SIGACT News, 35(2):22–
35, 2004, arXiv:quant-ph/0504012.

[7] Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath, and
John Watrous. One-dimensional quantum walks. In STOC ’01: Proceed-
ings of the 33rd Annual ACM Symposium on Theory of Computing, pages
37–49, New York, NY, USA, 2001.

[8] Paul Benioff. Space searches with a quantum robot. AMS Contemporary
Math Series, Vol, 305, 2002, arXiv:quant-ph/0003006.

[9] Bla Bollobs, Christian Borgs, Jennifer T. Chayes, Jeong Han Kim, and
David B. Wilson. The scaling window of the 2-SAT transition. Random
Structures and Algorithms, 18(3):201–256, 2001, arXiv:math/9909031.

[10] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam
Gutmann, and Daniel A. Spielman. Exponential algorithmic speedup
by quantum walk. In STOC ’03: Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, pages 59–68, 2003, arXiv:quant-
ph/0209131.

http://arxiv.org/abs/quant-ph/0012090
http://arxiv.org/abs/quant-ph/0403120
http://arxiv.org/abs/quant-ph/0504012
http://arxiv.org/abs/quant-ph/0003006
http://arxiv.org/abs/math/9909031
http://arxiv.org/abs/quant-ph/0209131
http://arxiv.org/abs/quant-ph/0209131

62 References

[11] Andrew M. Childs and Jeffrey Goldstone. Spatial search by quantum
walk. Phys. Rev. A, 70:022314, 2004, arXiv:quant-ph/0306054.

[12] D. Deutch. Quantum theory, the Church-Turing principle and the uni-
versal quantum computer. In Proceedings of the Royal Society of London,
volume 400 of A, Mathematical and Physical Sciences, pages 97–117, 1985.

[13] Richard P. Feynman. Simulating physics with computers. International
Journal of Thoeretical Physics, 21(6/7):467–488, Jun 1982.

[14] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In STOC ’96: Proceedings of the 28th annual ACM Symposium
on the Theory of Computing, pages 212–219, May 1996, arXiv:quant-
ph/9605043.

[15] Tad Hogg. Solving random satisfiability problems with quantum comput-
ers. 2001, arXiv:quant-ph/0104048.

[16] Julia Kempe. Quantum random walks - an introductory overview. Con-
temporary Physics, 44(4):307–327, 2003, arXiv:quant-ph/0303081.

[17] Viv Kendon. Decoherence in quantum walks - a review. Mathematical
Structures in Computer Science, 17(6):1169–1220, Dec 2007, arXiv:quant-
ph/0606016.

[18] Hari Krovi and Todd A. Brun. Hitting time for quantum walks on the
hypercube. Phys. Rev. A, 73:032341, 2006, arXiv:quant-ph/0510136.

[19] David A. Meyer. From quantum cellular automata to quantum lattice
gases. J. Stat. Phys., 85:551–574, 1996, arXiv:quant-ph/9604003.

[20] Ashley Montanaro. Quantum walks on directed graphs. Quantum Infor-
mation and Computation, 7(1), 2007, arXiv:quant-ph/0504116.

[21] Cristopher Moore and Alexander Russell. Quantum walks on the hyper-
cube. In RANDOM ’02: Proceedings of the 6th International Workshop
on Randomization and Approximation Techniques, pages 164–178, Lon-
don, UK, 2002. Springer-Verlag, arXiv:quant-ph/0104137.

[22] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, Cambridge, UK, 1995.

[23] Michael A. Nielsen and Isaac L. Chaung. Quantum Computation and
Quantum Information. Cambridge University Press, Cambridge, UK,
2000.

[24] C.H. Papadimitriou. On selecting a satisfying truth assignment. In FOCS
’91: Proceedings of the 32nd Annual IEEE Symposium on the Foundations
of Computer Science, pages 163–169, October 1991.

http://arxiv.org/abs/quant-ph/0306054
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/0104048
http://arxiv.org/abs/quant-ph/0303081
http://arxiv.org/abs/quant-ph/0606016
http://arxiv.org/abs/quant-ph/0606016
http://arxiv.org/abs/quant-ph/0510136
http://arxiv.org/abs/quant-ph/9604003
http://arxiv.org/abs/quant-ph/0504116
http://arxiv.org/abs/quant-ph/0104137

References 63

[25] Robin Pemantle, Rajarshi Das, and Torin Greenwood. Quantum ran-
dom walks archive. Available online at http://www.math.upenn.edu/

~pemantle/Summer2007/Archive.html, Aug 2007.

[26] Uwe Schöning. A probabilistic algorithm for k-SAT and constraint sat-
isfaction problems. In FOCS ’99: Proceedings of the 40th Annual IEEE
Symposium on the Foundations of Computer Science, pages 410–414, Oc-
tober 1999.

[27] Simone Severini. On the digraph of a unitary matrix. SIAM J. Matrix
Anal. Appl., 25(1):295–300, 2003, arXiv:math/0205187.

[28] Neil Shenvi, Julia Kempe, and K. Birgitta Whaley. Quantum random-
walk search algorithm. Phys. Rev. A, 67(5):052307, May 2003,
arXiv:quant-ph/0210064.

[29] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. In FOCS ’94: Proceedings
of the 35th Annual IEEE Symposium the on Foundations of Computer
Science, pages 124–134, 1994, arXiv:quant-ph/9508027.

http://www.math.upenn.edu/~pemantle/Summer2007/Archive.html
http://www.math.upenn.edu/~pemantle/Summer2007/Archive.html
http://arxiv.org/abs/math/0205187
http://arxiv.org/abs/quant-ph/0210064
http://arxiv.org/abs/quant-ph/9508027

	Introduction
	Quantum computing
	Quantum random walks
	Organization

	Classical algorithms
	Logic gates
	Computational complexity
	Satisfiability problems
	Evaluating k-SAT algorithms

	Quantum computing
	Physical motivations
	Quantum mechanics on qubits
	Quantum gates
	Reversible computation

	Quantum random walks
	Markov chains and random walks
	Defining a quantum walk
	Quantum walks on a line
	Quantum walks on regular graphs
	Walks on arbitrary undirected graphs
	Quantum walks on quantum computers

	Quantum walk search
	Quantum search
	Binary hypercube search
	Converting hypercube search to k-SAT
	Performance of probabilistic algorithms
	Quantum search on 2-SAT

	Directed quantum walks
	Defining a directed walk
	Directed walk on the line with loops
	Returning to k-SAT
	General quantum operations
	Directed quantum walks on any graph
	Quantum directed walks on 2-SAT
	Conclusions

	References

