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We propose a two-step protocol for inverting ultrafast spectroscopy experiments on a molecular
aggregate to extract the time-evolution of the excited state density matrix. The first step is a decon-
volution of the experimental signal to determine a pump-dependent response function. The second
step inverts this response function to obtain the quantum state of the system, given a model for how
the system evolves following the probe interaction. We demonstrate this inversion analytically and
numerically for a dimer model system, and evaluate the feasibility of scaling it to larger molecular
aggregates such as photosynthetic protein-pigment complexes. Our scheme provides a direct alter-
native to the approach of determining all Hamiltonian parameters and then simulating excited state
dynamics. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4800800]

I. INTRODUCTION

Ultrafast nonlinear spectroscopy allows us to experimen-
tally observe excited state dynamics in molecular aggregates,
and in particular, energy transfer essential to the function of
natural light harvesting systems.1–3 The existence of these ex-
perimental tools prompts a natural question: is it possible to
use spectroscopic measurements to directly infer the excited
state of such systems? A complete answer to this question
would be a procedure for quantum state tomography (QST),
that is, for reconstruction of the full density matrix describing
the quantum state.4, 5 State tomography is a technique that has
found widespread application for validating and characteriz-
ing quantum devices designed as components for quantum
computation. Such full characterization of an exciton state
over multiple pigments, beyond a mere classical probability
distribution, would offer information essential to understand-
ing the explicitly quantum features of energy transport, which
include coherence,6 entanglement,7 and possibly other types
of non-trivial quantum dynamics.8–11 In this work, we show
that under appropriate conditions and assumptions, QST of
excited states can be performed from the results of a series of
pump-probe type ultrafast spectroscopies.

The most sophisticated nonlinear technique for resolv-
ing energy transfer dynamics is the two-dimensional (2D)
photon-echo, in which the time delays between three ultra-
fast pulses are manipulated to provide a 2D map between
pump and probe frequencies at fixed time delays.12, 13 These
two-dimensional maps allow for direct visualization of the
relationship between excitation and emission energies as a
function of delay time. More formally, 2D spectroscopy is
usually interpreted in the limit of impulsive interactions. In
this approximation, it provides snapshots of the 3rd-order re-
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sponse function.1 Important applications of 2D spectroscopy
to photosynthetic systems have included resolving energy
transfer pathways14 and the dynamics of electronic quan-
tum beats.6, 15–17 In contrast, pump-probe spectroscopy (also
known as transient absorption) is a simpler type of 3rd-order
spectroscopy that historically predates 2D. In a pump-probe
setup, a pump pulse excites the system, which is probed at
some time later by a probe pulse. Because of its relative ease
of experimental implementation, pump-probe was used to fol-
low ultrafast energy transfer dynamics in photosynthesis long
before 2D spectroscopy. For example, it provided the first evi-
dence of electronic quantum beats in photosynthetic pigment-
protein complexes, in 1997.18 Pump-probe provides less in-
formation than the 2D photon echo, because the pump-probe
signal can be obtained by integrating over the excitation axis
in a 2D spectra.19 However, for the purposes of this work,
pump-probe has a clear advantage, namely, that it can be di-
rectly interpreted as a measurement of the state created by the
pump pulse. Formally, the pump dependence is entirely con-
tained within the change in the density matrix of the system
after interacting with the pump.20

In the past, time-resolved spectra such as pump-probe
have been analyzed by simultaneously or concurrently fit-
ting spectral components, known as decay associated or
species associated spectra, with a kinetic model.21, 22 These
techniques are powerful, as evidenced by their widespread
application to experiments. However, much of the kinetic in-
formation they reveal can be seen more directly in 2D spectra.
Moreover, kinetic models, although adequate for many pur-
poses, cannot describe more complex dynamics, such as those
deriving from quantum beats or from a non-Markovian bath.
Our approach to QST side-steps the issues of extending such
integrated analyses by focusing on identifying the quantum
state directly.

Recently, it was shown that a combination of photon-
echo measurements of excitonic systems can be combined to
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perform quantum process tomography of excitonic dimers,
either by using differently colored pulses23 or by combin-
ing peak amplitudes from a set of 2D spectra.24 Process
tomography4, 25 is more general than state tomography, be-
cause it specifies the full set of possible quantum evolu-
tions for a system given any initial condition. This makes it
well suited to characterizing gates for quantum computation,
which are by definition designed to handle any possible in-
put state. However, determining the full process matrix is ex-
pensive: it requires at least d4 − d2 real parameters for a d-
dimensional Hilbert space, in contrast to d2 parameters for
state tomography. Moreover, for analysis of complex molecu-
lar dynamics in condensed phases, such information, although
potentially helpful, is not necessary, because most trajectories
contained in the process matrix start from initial conditions
that are implausible for a molecular aggregate. Indeed, typi-
cal theoretical investigations of dynamics in light harvesting
systems26, 27 follow dynamics after excitation for only a lim-
ited set of plausible initial states, such as the states which ab-
sorb sunlight or excitations from neighboring antenna com-
plexes. Finally, the relative simplicity of state tomography
helps to simplify consideration of new theoretical approaches
to tomography, particularly because process tomography is
often based on a series of state tomographies.25

In this paper, we present a new approach to state tomogra-
phy of excitonic systems based on pump-probe spectroscopy.
Our approach is based on a two stage protocol that separates
the easy (field based) and hard (system based) parts of the
inversion process. This yields several advantages over prior
approaches,23, 24 including the ability to use arbitrarily shaped
laser pulses and to perform the first inversion even when the
second inversion is not possible. After presenting the details
of each of these inversions, we demonstrate their feasibility
by applying them to invert the simulated spectra of a model
dimer with a Markovian environment. We close with a consid-
eration of the conditions under which state inversion would be
feasible for a natural light-harvesting system, the FMO com-
plex of green sulfur bacteria.

II. RECIPE FOR PUMP-PROBE SPECTROSCOPY

We begin by presenting the specific theoretical formal-
ism for pump-probe spectroscopy that we propose to invert.
The measured signal in any 3rd-order spectroscopy experi-
ment, including pump-probe, is a function of the 3rd-order
polarization.1 This 3rd-order polarization depends on three
interactions between the applied fields and the sample, with
the time-ordering of these interactions enforced by time de-
lays of the pulses and by looking at the signal emitted in a
particular phase-matched direction. For a pump-probe exper-
iment, the first two interactions happen with the same pulse,
the pump, and the last interaction is with the probe pulse. The
phase-matched condition is that the signal is observed in the
direction of the probe. Based on this phase-matched geometry
and the response function formalism13 (see Appendix A), we
can combine the allowed time orderings to write the nonlinear
polarization for a pump-probe experiment under the rotating

wave approximation as

P (3)(t) =
∫ ∞

0
dt3RPP

(
t3, ρ

(2)
PP (t − t3)

)
E+

pr(t − t3), (1)

in terms of the pump-probe response

RPP
(
t, ρ

(2)
PP

)
= i

¯ Tr
[
µ(−)G(t)V (+)ρ

(2)
PP

]
. (2)

This pump-probe response is of identical form to the linear
response function,1 but with the electronic ground-state den-
sity matrix ρ0 replaced by the second-order contribution to the
density matrix ρ

(2)
PP that contributes to the phase-matched sig-

nal observed in a pump-probe experiment (that is, with signal
wave-vector kS = kpr). The quantities E+

pu(t) and E+
pr(t) de-

note the complex envelopes of the pump and probe pulses,
respectively, with E− ≡ (E+)∗. The dipole operators µ(−)

=
∑

n dnan and µ(+) = (µ(−))†, with an as the annihilation
operator for an electronic excitation on pigment n and dn the
corresponding dipole moments. The Liouville space operator
G(t) is the retarded material Green function for evolution for
time t and V (±) · ≡ [µ(±), ·]. Formally, the portion of the sec-
ond order contribution to the density matrix which contributes
to the signal is given by

ρ
(2)
PP (t) =

(
i

¯

)2

2
∑

±

∫∫ ∞

0
dt2dt1G(t2)V (±)G(t1)V (∓)ρ0

× E±
pu(t − t2)E∓

pu(t − t2 − t1). (3)

In deriving Eqs. (1)–(3), we employed the rotating wave
approximation (accurate for resonant excitation13) and
neglected those terms from the double-quantum-coherence
contribution (kS '= kpr). Accordingly, we can safely neglect
the possibility of multiple excitations in the calculation of
ρ

(2)
PP . In Appendix B we prove that the excited state portion of

ρ
(2)
PP is both equal to the excited state portion of the full density

matrix and is itself a valid (but unnormalized) density matrix.
The core of our proposed quantum state tomography is

the sequential inversion of Eqs. (1)–(3). The remainder of this
section discusses additional details relevant to simulating ex-
perimental signals to test our inversion procedure. We empha-
size that these expressions hold under the very general condi-
tions, requiring only the rotating wave approximation, that all
applied fields are weak and negligible overlap between pump
and probe pulses. No assumptions were made concerning the
shapes of these pump and probe pulses. Our decomposition
here is similar to the window-doorway picture for the pump-
probe signal,1 but here we have separated out the influence of
the control fields, even when not in the impulsive “snapshot”
limit. Related expressions in terms of a convolution of pump
and probe components have been shown to facilitate analysis
of pump-probe experiments with shaped probes.28

A. Detection scheme and probe convolution

In a typical pump-probe experiment, the probe pulse
has a fixed time-envelope, subject to a variable delay time
T between the two pulses. Accordingly, we may substitute
E+

pr(t) = Epr(t − T ). Likewise, experimental signals are most
directly interpreted in the frequency domain, so we now
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consider the Fourier transform of the nonlinear polarization,
P(3)(ω) =

∫
dt eiω(t − T)P(3)(t), calculated relative to the probe

delay T. We can also write the pump-probe response in the
Fourier domain, RPP(ω, ρ

(2)
PP ) =

∫
dt eiωtRPP(t, ρ(2)

PP ). In terms
of these quantities in the frequency domain with the ex-
plicit probe delay T, we can then replace Eq. (1) with a one-
dimensional convolution,

P (3)(ω, T ) =
∫ ∞

−∞
dτ RPP

(
ω, ρ

(2)
PP (τ )

)
Epr(τ − T )eiω(τ−T ).

(4)

To obtain this relation, we substituted t3 = t − τ and extended
the lower limit of the integral in Eq. (1) to −∞, because by
definition G(t) = 0 for t < 0. We cannot simply turn this con-
volution into a multiplication by taking the Fourier transform
of these quantities with respect to T, because for small or neg-
ative delay times T, there are contributions from signals where
the pump does not necessarily interact before the probe. If
RPP(ω, ρ

(2)
PP (τ )) does not vary appreciably over the duration of

the probe pulse, then the equation above is the Fourier trans-
form of the probe field envelope, so we can approximate

P (3)(ω, T ) ≈ Epr(ω)RPP
(
ω, ρ

(2)
PP (T )

)
. (5)

In the limit of a completely impulsive probe, Epr(t) ≈ E0δ(t)
and thus Epr(ω) is constant, so the nonlinear polarization
and the pump-probe response are equal up to a constant of
proportionality.

We measure the nonlinear polarization P(3)(t) by detect-
ing the corresponding signal field ES(t) ∝ iP (3)(t).1 Here we
consider heterodyne detection, either with the probe pulse as
in a standard “self-heterodyned” pump-probe setup, or with
a separate local-oscillator (LO) pulse. The use of a sepa-
rate local-oscillator is possible in a transient-grating setup, in
which the pump pulse is replaced by two otherwise identi-
cal pumps with different wavevectors k1 and k2, so that the
signal wavevector kS = −k1 + k2 + k3 does not match the
probe wavevector k3. Mathematically, this transient-grating
signal yields the same nonlinear polarization as in pump-
probe, although it raises experimental complications by re-
quiring phase-stability with an additional pulse. In heterodyne
detection, the absolute value squared of the sum of the sig-
nal and local-oscillator (or probe) fields can be spectrally dis-
persed and measured in the frequency domain.29 Typically,
the signal field is much smaller than that of the local oscillator,
so upon subtracting away the local oscillator contribution, the
measured signal S(ω) is proportional to Re[ES(ω)E∗

LO(ω)],
and thus

S(ω, T ) ∝ Im[P (3)(ω, T )E∗
LO(ω)]. (6)

This equation is a multiplication in the frequency domain.
Hence it is a convolution, and takes on similar form to
Eq. (4) when expressed in the time-domain. In the pump-
probe setup, ELO = Epr, so the signal for a fast probe given
by inserting Eq. (5) yields

S(ω, T ) ∝ |Epr(ω)|2ImRPP
(
ω, ρ

(2)
PP (T )

)
. (7)

In this case, the signal only depends on the imaginary (ab-
sorptive) part of the nonlinear polarization P(3) and the pump-
probe response. In the alternative transient grating setup, as

long as one is still in the limit of a fast probe, applying a π /2
phase shift to the now distinct local oscillator pulse allows
for obtaining the real (dispersive) part of the pump-probe re-
sponse function in a similarly direct manner.29 More gener-
ally, heterodyne detection with and without a π /2 phase shift
allows for obtaining both real and imaginary parts of the non-
linear polarization, respectively.

B. Pump-probe response function

To isolate the effect of the probe, the pump-probe re-
sponse function given by Eq. (2) can be written as

RPP
(
t, ρ

(2)
PP

)
= Tr

[
P(t)ρ(2)

PP

]
, (8)

with the pump-probe response operator P(t) defined as

P(t) = i

¯µ
(−)G(t)V (+). (9)

When inserted in Eq. (8), the action of P(t) is equivalent
to the action of i/¯[µ(−)(t), µ(+)(0)], where µ(±)(t) denotes
µ(±) in the Heisenberg picture. This is similar but not equiv-
alent to a family of quantum measurements4 parametrized by
the continuous time variable t (or frequency ω in the Fourier
domain), since RPP can be complex valued. Accordingly, the
pump-probe response can be interpreted as the projection of
ρ

(2)
PP onto P(t), where these are viewed as vectors in Liouville

space,1

RPP
(
t, ρ

(2)
PP

)
=

〈〈
P(t)

∣∣ρ(2)
PP

〉〉
. (10)

Individual components 〈〈P(ω)|α〉〉 of the pump-probe re-
sponse operator are equivalent to the species associated spec-
tra of the state |α〉〉.21

In most spectroscopy experiments, the signal is an en-
semble measurement summed over all possible molecular
orientations and static disorder of Hamiltonian parameters
(inhomogeneous broadening). Accordingly, the pump-probe
response in Eq. (2) should be replaced by its average over
molecular orientations and static disorder. The orientational
average can be handled elegantly using the expression for the
pump-probe response in Eq. (8): in the magic angle θ ≈ 54.7◦

(MA) relative polarization configuration between the pump
and probe pulses,30 the quantities P(t) and ρ

(2)
PP can simply be

replaced by their independent isotropic averages,
〈
RPP

(
t, ρ

(2)
PP

)〉
MA = Tr

[〈
P(t)

〉
iso

〈
ρ

(2)
PP

〉
iso

]
. (11)

By virtue of the properties of isotropically averaged tensors,31

these independent isotropic averages are equal to the average
of the quantities obtained from the xx, yy, and zz configura-
tions. In contrast, the ensemble average over static disorder
cannot be factorized this way in general, because under static
disorder the pump-probe operator and density matrix are cor-
related, and altering the system Hamiltonian (e.g., to shift
transition energies) changes both quantities systematically.

III. INVERSION PROTOCOLS

A. Deconvolution of the pump-probe signal

The first stage of our inversion protocol is a double-
deconvolution to determine the complex valued pump-probe
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response function RPP(T , ρ
(2)
PP ) from the results of a series of

heterodyne measurements, i.e., the signal S(ω, T). We need
such a double-deconvolution procedure because the results of
heterodyne detection depend on a (trivial) convolution over
the nonlinear polarization, which in turn depends on a convo-
lution over the response function [see Eqs. (4) and (6)]. Since
the excited state density matrix is entirely contained in the
pump-probe response function (Appendix B), this inversion
retains all information about the quantum state. However, it
is not immediately clear that the real (dispersive) part of the
response function contains useful information independent of
the imaginary (absorptive) part, which is the portion measured
by usual pump-probe experiments.

Inverting the signal to obtain the pump-probe response
function is a non-trivial but important task, since, as pointed
out above, the signal is directly proportional to the response
only when the probe pulse is much faster than all energy
transfer dynamics. Such pulses can be difficult to realize ex-
perimentally. The need for a full inversion to obtain the re-
sponse function is particularly relevant for understanding ex-
periments which show fast oscillations due to quantum beats,
whether these are of electronic, vibrational or mixed origin. In
such cases, the fast probe assumption of Eq. (5) is not valid.
We shall refer to the use of this approximate description for
inversion as the “naive” approach. In contrast, a proper treat-
ment of this inverse problem would attempt to undo the con-
volution in Eq. (4).

To address this challenge, we suggest the use of standard
deconvolution techniques32 based on general-form Tikhonov
regularization (also known as ridge regression), which we de-
scribe in detail in Appendices C and D. The response func-
tion can then be obtained from two sequential 1D deconvo-
lutions. First, we invert the measured signal S(ω, T) recorded
at each choice of delay time T to obtain the nonlinear polar-
ization P(3)(ω, T). The relationship between these signals is
simple multiplication by the probe (or local oscillator) field
in the frequency domain, so this step only uses the decon-
volution to smooth the reconstruction along the ω-axis. Sec-
ond, we invert the nonlinear polarization P(ω, T) with a one-
dimensional deconvolution for each fixed value of ω to ob-
tain the response function RPP(ω, ρ

(2)
PP (T )). For this inversion,

we only use experimental data with the delay between pump
and probe pulses long enough so that we can ignore pulse
overlap effects. Otherwise, we would be including non-pump-
probe contributions to the signal. However, we nevertheless
also reconstruct the pump-probe response at shorter times in
order to appropriately handle boundary conditions, since the
probe convolution means that these values for the response
function contribute to the nonlinear polarization inside our re-
gion of interest.

This first stage in the inversion of pump-probe experi-
ments requires only the detection results, i.e., the signal S(ω,
T), and an excellent characterization of the probe and local
oscillator fields. No system information is required at all.
Likewise, we have sacrificed no information from our mea-
surement about the internal system information, including its
quantum state. Thus, in principle, this stage can be performed
with high accuracy for any system, no matter how complex its
internal degrees of freedom.

B. Obtaining the quantum state

The second step to complete the state tomography is to
invert the pump-probe response function RPP(ω, ρ

(2)
PP (T )) to

obtain the quantum state ρ
(2)
PP (T ). This is certainly the harder

step, since it requires the ability to construct the pump-probe
response of arbitrary states. The necessary information is con-
tained in the pump-probe operator P(t) given by Eq. (9); cal-
culating this requires both the transition dipole moments and a
model for dynamics of the 1-exciton coherences between the
probe and signal interactions. Essentially the same informa-
tion is necessary to implement proposed algorithms for quan-
tum process tomography.23, 24 However, we emphasize that
we do not need to know the nature of the initial state cre-
ated by the pump pulse nor any details of the energy trans-
fer dynamics in the 1-exciton subspace. The lack of required
microscopic dynamical information is significant, since exact
energy transfer dynamics are non-trivial to calculate from first
principles.33

Here we consider a simple protocol for state tomography,
based on an assumed model for calculating the pump-probe
response. It is by no means the only such possible state to-
mography protocol: we choose it because it is straightforward
to implement, and turns out to be relatively robust to imper-
fections such as static disorder. To perform the inversion, we
propose to extract an estimate of the excited-state electronic
density matrix ρ̂e(τ ) from the estimated response function
R̂PP(ωi , τ ) at that delay time τ , for each frequency ωi match-
ing the single-exciton transition energies. The relationship be-
tween the vector of pump-probe response measurements and
the density matrix elements at any fixed time delay is linear
[see Eq. (10)], so as long as this map is non-singular, we can
solve for the density matrix by simply applying the matrix in-
verse to the vector formed by these estimated response func-
tion points. It is possible that in some circumstances this re-
construction will not yield a valid density matrix, since we
did not include the constraint that the reconstruction be pos-
itive semi-definite. In this case, then a best estimate to mini-
mize the mean-squared-error of the reconstruction should be
obtained using techniques based on maximum likelihood,34

although we do not encounter this issue for the examples we
consider in this paper.

An additional important practical step is the choice of
Liouville space in which the extracted state lies. Our results
so far hold for transition dipole operators and time evolution
without any particular restrictions concerning electronic vs
vibrational states or the Hamiltonian we use to describe our
system. However, as a practical matter for excitonic energy
transfer in light harvesting systems, we are most interested in
determining the electronic degree of freedom. The electronic
portion of ρ

(2)
PP has useful structure: namely, it only includes

nonzero elements in two blocks, the 0- and 1-excitation sub-
spaces. We denote the projection of the density matrix ρ onto
these subspaces by ρg and ρe, respectively. There is only one
electronic state in the 0-excitation subspace (the ground state
g), so the electronic portion of ρg must be in that state, |g〉〈g|.
In the Markov limit, or for delay times much longer than the
bath relaxation time, the vibrational portion of ρg will be in
thermal equilibrium ρB

eq. These facts determine ρg, up to a
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constant of proportionality: the ground state population. Be-
cause total probability is conserved in the process of laser ex-
citation, Tr ρ

(2)
PP = 0, so the ground state population is related

to the excited state population by Tr ρ(2)
g = − Tr ρ(2)

e . Accord-
ingly, we can write

ρ
(2)
PP = −

(
|g〉〈g| ⊗ ρB

eq

)
Tr

[
ρ(2)

e

]
+ ρ(2)

e . (12)

In this case, the pump-dependence in the pump-probe sig-
nal [Eq. (3)] is entirely contained in the excited state portion
of the density matrix. Since for weak fields ρe ≈ ρ(2)

e , with
Eqs. (10) and (12) we have a linear map from any excited state
density matrix ρe to the corresponding pump-probe response.
For a system with n electronic states, we can parameterize this
unnormalized density matrix in terms of a linear combination
of n2 real parameters,5 since the excited state density matrix
is positive (see Appendix B) and thus Hermitian.

A brief discussion of the scalability of this approach is
in order. Based on the real and imaginary parts of the pump-
probe response function in the magic angle configuration, our
state tomography protocol in principle has 2n independent
real parameters from which to extract the n2 real parameters
(including normalization) necessary to describe an arbitrary
excited state density matrix of n electronic states.5 Accord-
ingly, we cannot necessarily expect this procedure to scale
beyond a dimer (n = 2), for which we numerically demon-
strate the success and stability of this inversion procedure in
Sec. IV. The recently proposed quantum process tomogra-
phy algorithm based on peak and cross-peak amplitudes in
2D spectroscopy24 has similar scaling difficulties. It requires
determining n4 − n2 real parameters in the process matrix
from at most 12n2 possible experimental measurements: the
real and imaginary signals, n coherence and n rephasing fre-
quencies, at most 3 independent polarization configurations
and 2 phase-matched geometries. These estimates, however,
hold only for this specific approach and with a randomly ori-
ented ensemble. Oriented or single molecule measurements
offer a much larger number of independent polarization mea-
surements, a point we will return to Sec. V.

IV. EXAMPLE: DIMER MODEL

To understand in more detail how the quantum state de-
termines the pump-probe signal, we consider the case of the
signal for a dimer of coupled pigments. In general, we can
write an effective Hamiltonian for the electronic excited states
of a dimer in the form

Hel = E1a
†
1a1 + E2a

†
2a2 + J (a†

2a1 + a
†
1a2). (13)

The terms E1 and E2 are the transition energies of sites 1 and
2, and J is the pigment-pigment coupling energy. We restrict
the system to at most one excitation on each site, so our state
space is spanned by the set {|g〉, |e1〉, |e2〉, |f〉}, denoting the
ground state, excitation of the first or second site, and excita-
tion of both sites. We further assume the usual linear coupling
to a bath of phonons. Details of the bath are specified below.
The electronic part of this Hamiltonian can be diagonalized

by applying a unitary rotation U to the single-excitation sub-
space, given by

U =
[

cos θ sin θ

− sin θ cos θ

]
, (14)

where we defined the mixing angle θ = 1
2 arctan(2J/() with

( = E1 − E2. These single excitation eigenstates are denoted
|α〉 and |β〉, The transition dipole moments for each pigment
are d1 and d2, oriented with relative angle φ.

A. Analytical calculation of pump-probe response

To begin, we choose a parametrization for the excited
state density matrix of a dimer. In general, any valid den-
sity matrix for a two-level system can be written in any
basis in form 1

2 (I + r · σ ), in terms of the Pauli matrices
σ = {σx, σy, σz} and the Bloch vector r = {r1, r2, r3}, with ri
real and |r|2 ≤ 1.4 This can be straightforwardly generalized
to unnormalized density matrices by adding the normaliza-
tion r0 and defining σ 0 = I, in which case the set of valid
but unnormalized states are those that can be written in the
form 1

2 (r · σ ), where r is now the four-dimensional vector {r0,
r1, r2, r3} with constraints r2

1 + r2
2 + r2

3 ≤ r2
0 and r0 > 0. We

will use these four real parameters to parametrize the excited
state electronic density matrix ρe for our tomography proto-
col, since it has population r0 / 1. Using this representation,
the total second-order correction to the electronic density ma-
trix from Eq. (12) is given by

ρ
(2)
PP = −r0|g〉〈g| + r · σ

2
. (15)

For convenience, we suppose the state is written in terms of
the eigenbasis expansion of the excited states {|α〉, |β〉}, so
the parameters r1 and r2 correspond to excitonic coherences
and r3 corresponds to the balance of population between exci-
tonic states. In practice, the experimental signal is only known
up to a constant factor, so we can only hope to be able to re-
liably determine the normalized excited-state density matrix,
given by the usual Bloch-vector elements {r1/r0, r2/r0, r3/r0}.

It is now straightforward (if tedious) to write down the
exact pump-probe response function in terms of microscopic
parameters. For illustrative purposes, we do so here for a
dimer with a Markovian bath described by Redfield theory
in the secular approximation.3 The time-evolution contained
directly in the pump-probe response function is for times fol-
lowing the probe interaction, so the relevant part of the sys-
tem density matrix for this evolution includes coherences be-
tween ground and singly excited states and between singly
and doubly excited states. In secular-Redfield theory, coher-
ences in the excitonic basis only evolve with exponential de-
cay, G(T )|a〉〈b| = e−γabT -(T )|a〉〈b|, where G(T) is the re-
tarded material Green function denoting evolution for time T,
- is the Heaviside step function, and γ ab is some complex
number with positive real part. Since the formulas for the re-
sponse function will accordingly be most compact in the exci-
ton basis, we consider the excitonic transition dipole moments
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given by

µgα = µ1 cos θ + µ2 sin θ, (16a)

µgβ = −µ1 sin θ + µ2 cos θ, (16b)

µαf = µ1 sin θ + µ2 cos θ, (16c)

µβf = µ1 cos θ − µ2 sin θ, (16d)

with µi = diai, where di is the component of the dipole-
transition vector parallel to the probe polarization. For con-
venience, we define fα and f ′

α to denote the Fourier transform
of the time evolution operator that leads to a peak in the pump-
probe spectrum at frequency ωα , with decay constant γ or γ ′,
where the prime indicates the decay constant for the transition
between the 1- and 2-exciton manifolds instead of between
the 0- and 1-exciton manifolds:

fα = 1
i(ωα − ω) − γ

, f ′
α = 1

i(ωα − ω) − γ ′ . (17)

We define fβ and f ′
β analogously, for the components peaked

at ωβ .

Using Eq. (10), the calculation of the pump-probe re-
sponse function for an arbitrary state is determined by the vec-
torized version of the pump-probe operator, 〈〈P(ω)|. For this
dimer problem, we define the pump-probe bra vector such that
RPP = 〈〈P|r〉〉, where |r〉〉 = r = {r0, r1, r2, r3}. Such a rela-
tion still holds upon substitution of |r〉〉 for ρ

(2)
PP , since the re-

lation between the two given by Eq. (15) is linear. With this
convention, evaluating the pump-probe operator in Eq. (9) for
this dimer model described by secular-Redfield theory yields
the general result,

〈〈P| ∝





−3µ2
gαfα + µ2

βf f ′
α − 3µ2

gβfβ + µ2
αf f ′

β

−µgαµgβ(fα + fβ) + µαf µβf (f ′
α + f ′

β)

−i[µgαµgβ(fα − fβ) + µαf µβf (f ′
α − f ′

β)]

−µ2
gαfα − µ2

βf f ′
α + µ2

gβfβ + µ2
αf f ′

β





T

.

(18)

This equation holds for each single molecule that would con-
tribute to the pump-probe signal. We can also calculate the
exact isotropic average of Eq. (18) over an ensemble of ran-
domly oriented molecules. In terms of the original Hamilto-
nian parameters, it is given by

〈〈〈P|〉iso ∝





(cos2 θ + δ2 sin2 θ )(f ′
α − 3fα) + (sin2 θ + δ2 cos2 θ )(f ′

β − 3fβ) + δ sin 2θ cos φ(−f ′
α + f ′

β − 3fα + 3fβ )

− 1
2 (δ2 − 1) sin 2θ (f ′

α + f ′
β + fα + fβ) + δ cos 2θ cos φ(f ′

α + f ′
β − fα − fβ)

i[ 1
2 (δ2 − 1) sin 2θ (f ′

α − f ′
β + fα − fβ) + δ cos 2θ cos φ(−f ′

α + f ′
β + fα − fβ)]

−(cos2 θ + δ2 sin2 θ )(f ′
α + fα) + (sin2 θ + δ2 cos2 θ )(f ′

β + fβ) + δ sin 2θ cos φ(f ′
α + f ′

β − fα − fβ)





T

,

(19)

where θ is the excitonic mixing angle, δ = |d2|/|d1| is the
ratio of the two site transition dipole moments and φ is the
angle between them. Note that neither of these equations in-
cludes the effects of static disorder, which could be accounted
for by averaging the pump-probe response function over each
member of the ensemble. Formally, it does not suffice to sep-
arately average 〈〈P|, since under static disorder the state |r〉〉
also varies in correlated way (see Sec. II B).

Equation (19) makes it possible to determine some cases
in which solving for the isotropically averaged state can-
not possibly be successful, regardless of the exact inversion
protocol. We can identify these cases because successful
inversion requires that the elements of 〈〈〈P|〉iso be linearly
independent. For example, in the homodimer case with both
pigments fixed to have the same transition energies (θ = π /4
or θ = 3π /4) and equal transition-dipole moment magnitudes
(a = 1), the pump-probe signal does not depend on the co-
herence terms, so it will be impossible to determine them
(r1 and r2). Likewise, the coherence terms do not contribute
if the transition dipole moments have identical magnitude
(δ = 1), and either these are oriented perpendicularly

(cos φ = 0) or there are matching dephasing rates for the 0-1
and 1-2 coherences (fα = f ′

α and fβ = f ′
β , as occurs in the

high-temperature limit). As Yuen-Zhou et al. found for the
same dimer model,23 quantum process tomography also fails
under similar but not identical conditions.

B. Numerical example

For a numerical example, we consider the dimer
model used in a prior investigation of quantum process
tomography.23 We model excitation by a resonant 40 fs
full-width-at-half-maximum (FWHM) pump centered at
12 800 cm−1. The parameters in the electronic Hamilto-
nian are E1 = 12 881 cm−1, E2 = 12 719 cm−1, and J
= 120 cm−1, and the experiment is performed on an en-
semble with normally distributed static disorder of standard
deviation 40 cm−1 added to each site energy. The transition
dipole moments are fixed with ratio δ = |d2/d1| = 2 and
orientation angle φ = 0.3. Each pigment is assumed to be
coupled to an independent bath of phonons, with spectral den-
sity of the form J (ω) = λ

ωc
ωe−ω/ωc with ωc = 120 cm−1 and
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FIG. 1. Absorptive (left) and dispersive (right) parts of the pump-probe re-
sponse function RPP(ω, ρ

(2)
PP (τ )) (top) and the corresponding heterodyne de-

tected signal S(ω, τ ) (bottom) for our dimer model system. The dashed line
indicates the two exciton transition energies in this system. Only the absorp-
tive part (left) is revealed directly by a pump-probe experiment. Obtaining
the dispersive part (right) requires a transient grating setup with heterodyne
detection, as described in Sec. II A.

λ = 30 cm−1. The bath is assumed to be at thermal equilib-
rium at T = 273 K and is modeled by secular Redfield theory,3

including only the real (dissipative) part of the Redfield
tensor.

To simulate an experimental dataset, we first calculate the
nonlinear polarization P(3)(ω, T) for a probe of the same shape
as the pump pulse, on a grid of 181 probe frequencies ω (in-
tervals of 3.33 cm−1 between 12 500 cm−1 and 13 100 cm−1)
and 140 central time-delays T between pump and probe pulses
(intervals of 6.81 fs between 50 fs and 1 ps). From this nonlin-
ear polarization, we then calculate the results of a hypotheti-
cal heterodyne detection with a local oscillator matching the
probe pulse, with and without a π /2 phase shift. Finally, we
accounted for noise in detection by including additive noise
with uniformly random phase and amplitude drawn from a
standard deviation with width equal to 10−2 times the max-
imum amplitude over all delay times and frequencies of the
heterodyne detected signal S(ω, T). These simulated measure-
ments, generated for comparison both with and without detec-
tion noise, are shown in Fig. 1, together the response function
from which they are calculated.

C. Response function inversion

Figure 2 illustrates the performance of the completed
double Tikhonov regularization based deconvolution algo-
rithm for typical noisy and noise free examples of our test
problem. We compare with the “naive” approach of assum-
ing that the probe is impulsive and using Eq. (5) to obtain the
response function by simply dividing the signal by absolute
value squared of the probe field |Epr(ω)|2. Table I summa-
rizes the results of the simulated inversion for the noise free

FIG. 2. (a) Example reconstruction of the pump-probe response at fixed
probe-frequency ωα for an instance of the high-noise test problem. (b) Errors
in the estimated pump-probe response obtained by the direct and Tikhonov
inversion methods for a single example of the low and high noise test prob-
lems. The error is given by the absolute value squared of the difference be-
tween the estimated and actual response function, |R̂pp(ω, τ ) − RPP(ω, τ )|2.

case and 1000 such noisy examples. In addition to the double
Tikhonov and naive methods, we also consider the alterna-
tives of substituting the naive approach individually for each
of the two Tikhonov steps. Recall that in the first stage of
the inversion (S → P(3)), the Tikhonov regularization serves

TABLE I. Summary of deconvolution performance over 1000 instances of
simulated experimental noise. RMSE (root-mean-squared-error) is given by
the sum of the absolute difference between the estimated and actual response
functions, (

∑
ω,τ |R̂pp(ω, τ ) − RPP(ω, τ )|2)1/2. Improvement is the multiple

of the reduction in RMSE compared to the naive approach. Uncertainties
indicate one standard deviation in the empirical distribution.

Noise S → P(3) P (3) → RPP RMSE Improvement

10−2 Naive Naive 12.12 ± 0.07 . . .
10−2 Tikhonov Naive 7.78 ± 0.05 1.6 ± 0.0
10−2 Naive Tikhonov 3.34 ± 0.08 3.6 ± 0.1
10−2 Tikhonov Tikhonov 0.98 ± 0.06 12.5 ± 0.7

0 Naive Naive 7.110 . . .
0 Tikhonov Naive 7.110 1.0
0 Naive Tikhonov 0.005 1301
0 Tikhonov Tikhonov 0.005 1301
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only to smooth the data. It is not surprising then that Table I
shows that the specific method chosen for this first stage
(i.e., naive or Tikhonov) makes no difference for the noise
free case. In the second stage (P (3) → RPP), the Tikhonov
regularization also performs a deconvolution over the probe
envelope.

The results in Fig. 2 and Table I show that the Tikhonov
based inversion is a clear improvement over the naive ap-
proach, reducing the root-mean-squared-error (RMSE) by a
factor of 12 for our noisy example and 1300 for our noise-
free example. The noisy and noise free examples allow us to
observe that the Tikhonov regularizations remove two types
of errors inherent in the naive inversion: (1) errors from noisy
measurements and (2) errors associated with the convolution
of the pump-probe response over the finite probe duration. In
the noisy case, both errors are large; in the noise free case,
there are only errors from the second source. Clearly, re-
ducing the experimental noise associated with measurement
alone does not suffice to accurately estimate the pump-probe
response, as the double Tikhonov inversion of the noisy sig-
nal outperforms naive inversion of the noise free signal by a
factor of 7 in RMSE.

As Figure 2 shows, the errors in the estimate of the re-
sponse function are not uniformly distributed, revealing struc-
ture relevant to our specific example and also to more generic
systems. The largest errors are associated with smallest de-
lay times. This makes sense, since the smallest delay times
are those at which at the response function (shown in Fig. 1)
varies most rapidly. For almost any system, the pump-probe
spectrum will change fastest at short delay times, but this
is especially true for our example system, where the pump-
probe signal includes contributions from quickly oscillating
coherences. The Tikhonov estimates face an additional stabil-
ity challenge at short delays times, since, as discussed above,
the reconstruction cannot use measurements from the pulse
overlap regime.

D. State tomography

Since we have demonstrated that the first, response func-
tion inversion can be performed with vanishing error, we now
consider inverting the exact pump-probe response function to
obtain the state of our model dimer. Despite the presence of
static disorder in our example, we use the factorization of the
response function in Eq. (11). We are obliged to do so even
though strictly speaking the relationship does not hold, be-
cause the alternative of reconstructing the density matrix for
each member of the ensemble from a bulk measurement is un-
realistic. Accordingly, even without adding noise associated
with the measurement, when carried out for an ensemble, our
inversion faces potential stability issues because of the static
disorder.

The degeneracies and near degeneracies in Eq. (19) mean
that for most Hamiltonian choices our inversion algorithm can
only robustly extract at most three of the four parameters nec-
essary to fully characterize the dimer excited state, since the
reconstruction matrix will be poorly conditioned. The condi-
tion number of a linear transformation gives a bound on the

multiplicative increase in the relative error after performing
the linear transformation.35 For our specific numerical exam-
ple, the condition number drops from 3700 to 3.1 when we
include only three parameters. One source of these stability
issues for a dimer is evident from Eq. (19): since our numer-
ical example has well separated transition energies, the main
contribution to the peaks in the dispersive part of the signal
is to the imaginary part of the coherence term, r2. This leaves
our inversion to recover three parameters (r0, r1, and r3) from
the two peak amplitudes in the absorptive signal. Since re-
covering three unknowns from two equations is not possible,
we need to fix one of these values in order to make the in-
version stable. The obvious choice is to fix the normalization
r0, since the total excited state population should remain con-
stant after the end of the pump pulse until spontaneous decay,
on timescales approaching 1ns for natural pigment-protein
complexes.2 To determine the normalization, we solve for it
at a moderately long delay time (e.g., τ = 10 ps) at which
point we can safely assume (at least under secular Redfield
dynamics) that the real part of the coherence r1 → 0, but very
few excitations have been lost. If these timescales are not eas-
ily separable, then this normalization term could be fit to an
exponential decay.

The results of applying this state tomography procedure
to our numerical example with varying levels of static dis-
order are shown in Fig. 3. The fidelity, ranging from 0 to
1, provides a numerical summary of the quality of the state
reconstruction.4 For the level of static disorder chosen by
Yuen-Zhou et al.23 (40 cm−1), the reconstruction [panel (a)]
has a worst-case fidelity of 99.5% over delay times T shorter
than 1 ps, and an average-case fidelity of 99.9%. However,
we see that both the worst-case and average-case fidelities
drop sharply as the static disorder is increased above this level
[panel (b)], since our assumption that the pump-probe re-
sponse can be factorized between the pump-probe projection
and the second order density matrix becomes increasingly un-
realistic.

V. SCALING TO LARGER SYSTEMS

Can state tomography scale to systems larger than an ex-
citonic dimer? In particular, can we apply it to precisely reveal
the excitonic state in a natural light-harvesting system? Any
scaling difficulties will be encountered in the second step of
our inversion protocol, to determine the quantum state from
the response function, since the relationship between the re-
sponse function and measured signal does not directly depend
on system parameters. Successful state tomography certainly
requires both knowledge of how each density matrix element
contributes to measurements and appropriate conditions such
that each element, at least in principle, makes an independent
and non-zero contribution. By construction, these conditions
were satisfied for our hypothetical dimer example. We found
that the primary limitation on solving for the state was en-
semble disorder, which can in principle be avoided by single
molecule techniques. Now, to explore the limits of state to-
mography, we relax these assumptions in order to consider the
feasibility of state tomography in an actual protein-pigment
complex.
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FIG. 3. Results of quantum state tomography for our dimer test problem.
(a) Original (solid) and reconstructed (dotted) values for each element of the
Bloch state vector for the reconstruction with static disorder of standard de-
viation 40 cm−1. Normalization is omitted since the state vector elements
are rescaled such that r0 = 1 fixed for all times following initial excitation.
(b) Worst- and average-case fidelities for the reconstructions ρe(τ ) for delay
times τ in the range 50 fs to 1 ps as a function of the width (standard de-
viation) of the distribution of static disorder. Results are obtained from an
ensemble average over 106 samples for each point.

As a model light-harvesting system, we focus on a
monomer of the Fenna-Matthews-Olson (FMO) complex
of green sulfur bacteria, which consists of 7 pigment
molecules.18, 36 The FMO complex is a widely used model
system for understanding photosynthetic energy transfer and
is thus is one of the best characterized natural protein-pigment
complex. The crystal structure for the FMO complex is
known, which combined with input from spectroscopy ex-
periments, has allowed for general agreement on an elec-
tronic Hamiltonian.36, 37 Because the arrangement of pigments
is fairly disordered, each excited state in a monomer of the
FMO complex is bright, although they overlap in the pres-
ence of homogeneous and inhomogeneous broadening. This
is important, since full state tomography would certainly not
be possible on a system with multiple dark states, because no
optical probes could reveal the distribution of energy among
those states. However, typical of the situation for other nat-
ural pigment-protein systems, there is little consensus on the
magnitude of the static disorder or the spectral density of the
electronic-vibrational coupling.27 These difficulties are com-
pounded by the theoretical and computational challenge of

modeling dynamics in a system as large as FMO exactly
for arbitrary system-bath interaction strength.26 For our con-
crete example, we use the electronic Hamiltonian for FMO
of Chlorobaculum tepidum from Ref. 36, with the spectral
density and computational model of secular Redfield theory
matching those used in for the dimer example. This model
includes only one electronic state per pigment and assumes
Gaussian distributed static disorder with standard deviation
42.5 cm−1 (100 cm−1 FWHM).

Our formalism for the pump-probe response function
allows us to place bounds on the feasibility of any state
tomography procedure, since the relationship between system
information and the resulting pump-probe spectra is entirely
contained in the pump-probe response operator. By looking
at the ensemble average of this operator, we implicitly con-
sider inversion under the scenario that the average over static
disorder can be factorized between the pump-probe operator
and the density matrix,. This assumption was successful in the
dimer example above when the magnitude of static disorder
was not too large. As discussed in Sec. II B, the pump-probe
operator at each frequency can be interpreted as a Liouville
space bra-vector 〈〈P(ω)|. Accordingly, it is possible to inter-
pret the calculation of a pump-probe response as the act of
applying the linear operator

P =
∫

dω|ω〉〈〈P(ω)| (20)

to the state |ρ(2)
PP 〉〉. We now consider the properties of the lin-

ear operator P in the limit of effectively continuous sampling
of probe frequencies ω. To represent states in Liouville space,
we use a basis set that allows us to represent each state with
n2 real values, in terms of populations |n〉〈n| and coherences
|n〉〈m| + |m〉〈n| and i|n〉〈m| − i|m〉〈n|. This allows us to con-
struct a real-valued version of the map P that takes real valued
state vectors to real valued spectra by concatenating the real
and imaginary parts of P .

To begin, in Figure 4 we plot the elements of the absorp-
tive (real) part of the pump-probe operator for our model of
the FMO complex in the isotropic average (magic angle con-
figuration). We represent the operator in terms of the species
associated spectra of each exciton population and the real and
imaginary part of each coherence, so that the pump-probe
spectra of any excited state is equal to the linear combination
of the plotted spectra weighted by the indicated density matrix
elements. In addition to the unperturbed spectra, we also plot
the range of possible spectra given current uncertainty about
the best fit parameters. We conservatively estimate the uncer-
tainty in the electronic Hamiltonian by sampling over addi-
tive independent Gaussian noise of width 20 cm−1 for each
site energy and 10% of the value of each off-diagonal cou-
pling. This uncertainty is in addition to the static disorder,
which we leave with fixed magnitude. The most striking fea-
ture of these spectra is that, at least in the isotropic average,
the dominant contribution to the pump-probe spectra is from
the population terms. The smaller contribution of most coher-
ence terms, compounded by the already smaller values of the
coherences in the density matrix due to dephasing, explains
why it is difficult to observe oscillations due to electronic
coherence in pump-probe spectra.18 Even for extremely
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FIG. 4. Species associated spectra, defined by the contribution of the marked density matrix elements to the pump-probe response, for the FMO complex at
77 K (blue) and 300 K (red), obtained as the average of 1000 samplings over static disorder. Labels indicate the contributing density matrix element in the
excitonic basis. Shaded regions indicate central 95% confidence intervals obtained from 1000 additional samplings over Hamiltonian uncertainty, as described
in the text.

precise measurements, the uncertainty in some of these
species associated spectra suggests that our current Hamilto-
nian characterization does not suffice to reliably obtain most
density matrix elements. Indeed, the dominance of the diago-
nal terms suggests that a practical scheme for partial state to-
mography could consist of entirely ignoring the off-diagonal
terms.

Another approach to estimating the feasibility of inver-
sion for arbitrary states is to look at the spectral properties of
the operator P as revealed by the singular value decomposi-

tion, P = USV †, where U and V are unitary and S is diagonal
with positive elements. In particular, we focus on the singular
values σ i, given by the diagonal elements of S in descend-
ing order and normalized to the highest singular value σ 1. To
compare the feasibility of inversion under various conditions,
we plot these singular values in Figure 5. The singular val-
ues reveal significant information about the feasibility of an
inversion: in general, inversion is more feasible when the sin-
gular values σ i decay more slowly.32 For example, the con-
dition number, which gives an upper bound on the ratio by
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FIG. 5. Normalized singular values from a singular value decomposition of
the real valued pump-probe map P given by Eq. (20) for the FMO complex
under various conditions. The top line is from the spectra of a single monomer
at 77 K, from the combination of measurements in all independent polariza-
tion configuration. Subsequent lines add additional constraints, which apply
cumulatively: ensemble measurement (over static disorder), the isotropic av-
erage of the signal, only the absorptive (real) part of the signal and finally
performing the measurement at room temperature.

which the relative error can increase in an inversion, is equal
to the ratio of the largest to the smallest singular values. In
Figure 5, the condition number is one over the value shown for
i = 49.

Figure 5 provides an indication of the relative signifi-
cance of different experimental constraints insofar as they af-
fect state tomography. We see two major changes that reduce
the condition number of the inversion by around two orders
of magnitude each. First, reducing temperature from 300 K to
77 K improves the conditioning because spectral features in
the species associated spectra are sharpened. Second, chang-
ing from a randomly oriented (isotropic) to an oriented sam-
ple helps because in principle 9 times more independent mea-
surements are possible than in the magic angle configuration,
one for each combination of x, y, and z polarizations for the
probe and signal interactions. This is illustrated in Figure 6,
which plots the peak amplitudes of each of the species as-
sociated spectra. In some cross-polarization configurations,
coherences give contributions of similar magnitude to pop-
ulations. Single molecule measurements do offer an impor-
tant advantage over oriented ensembles that is not seen in
this figure, since their analysis does not require any assump-
tion that the average over static disorder can be factorized
between pump and probe. Finally, this figure suggests that
the dispersive component of the signal, which as discussed in
Sec. II A requires a transient grating experiment, offers little
additional information compared to the absorptive component
that is provided directly by the pump-probe signal.

FIG. 6. Maximum amplitude over probe frequencies of the species associ-
ated spectra for a FMO monomer at 77 K for (a) the isotropic average and (b)
each independent polarization configuration of the probe and local oscilla-
tor, including the ensemble average over static disorder. The labeling of each
species matches that used in Figure 4: all entries including and above the
diagonal correspond to the real part of the matching density matrix element
(in the excitonic basis), and all entries below the diagonal correspond to the
imaginary part. The cartesian coordinates were chosen arbitrarily, matching
those used in an assignment of the crystal structure.

VI. CONCLUSIONS

What information does an ultrafast spectroscopy exper-
iment tell us about an excitonic system? How can we best
design these experiments? We believe that a powerful way to
answer these questions is to treat ultrafast spectroscopy as a
hierarchy of statistical inverse problems, as we have demon-
strated here for estimating the electronic excited state. By
dividing our analysis into many smaller steps—from exper-
imental signal to response function to excited state and even-
tually on to dynamics, equations of motion and Hamiltonian
parameters—we can see exactly how and where our mod-
els and experiments fall short. In this regard, our approach
contrasts strongly with the established procedure of “for-
ward simulation” for determining Hamiltonian parameters in
complex excitonic systems by simultaneously fitting many
experiments with an assumed theoretical model for calculat-
ing spectra from first principles.36, 38 Moreover, to identify the
time-evolving excited state or another intermediate quantity
in our approach, we do not need to introduce additional errors
by recalculating from first principles.

Our multi-stage inversion has clear extensions to more
general nonlinear spectroscopies beyond QST and pump-
probe. As we describe in Appendix E, we could apply es-
sentially the same inversion procedure to a photon-echo ex-
periment to determine the phase-matched component of the
2nd-order density matrix that contributes to the observed sig-
nal [Eq. (E1)]. If it is possible to construct a full set of inde-
pendent phase-matched initial conditions, our state tomogra-
phy procedure could be used for process tomography, along
the lines of a previous proposal.23 More generally, this sug-
gests a new indirect approach for process tomography: first,
field information should be used to obtain the 3rd-order re-
sponse function; second, system information should be used
to extract the process matrix. Determining the response func-
tion as an intermediate quantity allows us to be sure we have
obtained the maximum information from experiments before
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considering the harder theoretical problem of extracting sys-
tem parameters, such as the state, process matrix or underly-
ing Hamiltonian. Such extensions will be pursued in future
work.

More immediately, our approach is particularly well
suited to evaluating the benefits of employing colored pulses
or an ultrafast pulse shaper, because our formalism makes no
assumptions about the shape of pump and probe pulses: they
are only required not to overlap in time. In contrast, prior
proposals for process tomography relied on the assumption
that interactions with laser pulses are much faster than the
timescale of dissipative system dynamics.23, 24 Accordingly,
we envision potentially using our scheme for verification of
state preparation following shaped pump pulses,39, 40 scenar-
ios for which single molecules or oriented samples are simi-
larly helpful. Indeed, pump-probe spectroscopy has been used
to experimentally verify ultrafast coherent control.41 The de-
convolution step in our inversion protocol also made no as-
sumptions about the shape of the probe pulse. Although our
extensive numerical simulations found no cases in which a
shaped probe pulse was preferable to the corresponding time-
frequency limited pulse, our inversion protocol can just as eas-
ily obtain the nonlinear response from, say, pump-probe mea-
surements where the probe has residual chirp. This suggests
the possibility of improving pulse characterization for better
time resolution instead of or in addition to efforts to further
compress pulses in time.28

Finally, we point out that we have demonstrated state to-
mography in this work mostly for ensemble systems, includ-
ing averaging over molecular orientations and static disorder.
These features inevitably reduce the performance of the inver-
sion. However, both oriented and single molecule experiments
may be possible in the near future, given recent advances of
preforming ultrafast spectroscopy on crystallized proteins42

and the possiblity of using nonlinear florescence measure-
ments with phase-cycling43 to scale nonlinear spectroscopy to
single molecules. For such single molecule experiments, we
expect the present inversion will provide a powerful analytical
tool.
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APPENDIX A: DERIVATION OF PUMP-PROBE SIGNAL

In third-order spectroscopy, the phase-matched signal de-
pends on the third-order polarization,13 which can be written
as

P
(3)
ks

(t) =
∫∫∫ ∞

0
dt3 dt2 dt1 R

(3)
ks

(t3, t2, t1)

× E
u3
3 (t − t3)Eu2

2 (t − t3 − t2)

× Eu1
1 (t − t3 − t2 − t1) (A1)

assuming that the interactions happen in the numbered order
and invoking the rotating wave approximation. The quantity
kS = u1k1 + u2k2 + u3k3 is the signal wave-vector, (u1, u2,
u3) ∈ {(−, +, +), (+, −, +), (+, +, −)} correspond to the
three experimental geometries with non-zero signal (rephas-
ing, non-rephasing and double-quantum-coherence, respec-
tively) and E+

i (t) denotes the complex profile of the ith pulse
(we use the convention E− = (E+)∗). The system dynamics
are contained in the phase-matched components of the third
order response function R

(3)
ks

(t3, t2, t1), which is given by

R
(3)
kS

(t3, t2, t1)

=
(

i

¯

)3

Tr [µ(−)G(t3)V u3G(t2)V u2G(t1)V u1ρ0], (A2)

in terms of the quantities defined in Sec. II.
In a pump-probe experiment, the first two interactions are

with the same pulse (k1 = k2), called the pump, and the signal
is observed in the direction kS = k3, so u1 = −u2. The third
interaction is with the probe field. Accordingly, the signal is
given by adding together the rephasing and non-rephasing
interactions, and both pulse orderings 1-2-3 and 2-1-3. Re-
arranging the terms that result from inserting Eq. (A2) into
Eq. (A1) yields Eqs. (1)–(3).

APPENDIX B: POSITIVITY OF ρ
(2)
e

We consider the system density matrix ρ in the presence
of weak fields of strength ε / 1. Let ρ(n) denote the contribu-
tion to the density matrix of strength O(εn). Thus we can write
ρ = ρ(0) + ρ(1) + ρ(2) + ρ(3) + O(ε4). Since the temperature
is typically several orders of magnitude smaller than the elec-
tronic energy gap, the system starts in a tensor product of the
electronic ground state |g〉〈g| and the equilibrium vibrational
state ρB

eq, ρ(0) = |g〉〈g| ⊗ ρB
eq.

We are interested in the excited state portion of ρ
(2)
PP , the

component of ρ(2) that contributes to the phase-matched sig-
nal kS = kpr given by Eq. (3). We write this excited state
density portion as ρ(2)

e = Qρ
(2)
PP , where Q denotes the pro-

jection onto the 1-excitation manifold. Since the non-phase-
matched components involve 2-excitation states, we also have
ρ(2)

e = Qρ(2). This projection is given by Qρ = I1ρI
†
1 , where

I1 =
∑

m|m〉〈m| is the identity operator restricted to the 1-
excitation manifold and |m〉 denotes the state where only pig-
ment m is excited. Since the map Q is written in the appro-
priate form and

∑
n InI

†
n = I , Q is completely positive, with

0 ≤ TrQρ ≤ 1.4

Moving from the ground state to the 1-excitation
manifold requires at least two applications of the cre-
ation/annihilation operators contained in the dipole transition
operators µ(±), and a dipole operator must be applied an even
number of times. Accordingly, Qρ(n) = 0 for n = 0, 1, 3,
which leaves Qρ = ρ(2)

e + O(ε4). Since we proved Qρ is pos-
itive and ρ(2) itself is O(ε2), we have shown that ρ(2)

e is posi-
tive, up to relative errors of O(ε2). Any positive operator is a
valid density matrix if it has trace one.4
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APPENDIX C: TIKHONOV REGULARIZATION

The convolution of the pump-probe response with the
probe pulse in Eq. (4) and the nonlinear polarization with the
local-oscillator in Eq. (6) are both particular cases of a Fred-
holm integral equation of the first kind. An extensive litera-
ture exists on numerical inversion of such equations, known
as discrete inversion problems.32 In general, the discretization
of such an integral equation can be written as

b = Ax + ε, (C1)

where b is the measured signal [e.g., the nonlinear polariza-
tion P3(ω, T)], x is the desired quantity to obtain [e.g., the
response function RPP(ω, T )], A is a linear operator represent-
ing the integral equation with appropriate coefficients (deter-
mined here by the probe field Epr) and ε denotes some ad-
ditive experimental error inherent in the data collection. The
obvious solution to estimating x from A and b is to calculate
x̂ = A−1b. However, in practice A may not be invertible. This
is the case for our inversion, since we ignore the experimental
signal for times in the pulse overlap regime but still attempt
to reconstruct the pump-probe response at those times, which
guarantees that b has a lower dimensionality than x. In ad-
dition, the presence of even a vanishingly small amount of
experimental noise ε makes exact least-squares minimization
unsuitable; it will over-fit the noise component ε.

Accordingly, to calculate a robust estimate x̂ of x we use
general form Tikhonov regularization,32

x̂ = argmin
x

{
‖Ax − b‖2 + λ2‖Lx‖2} . (C2)

Tikhonov regularization can be derived formally from the per-
spective of Bayesian inference, given normally distributed er-
rors and priors.44 It can be equivalently be expressed as the
linear least-squares problem, min ‖[ A

λL
]x − [ b

0 ]‖2, and thus
the exact solution is given by x̂ = [ A

λL
]+[ b

0 ], where + de-

notes the Penrose-Moore pseudoinverse.32 Ideally, the lin-
ear operator L and (real) regularization parameter λ are cho-
sen so that λ2‖Lx‖2 is an optimally weighted penalty on
undesirable features of the solution x, reflecting our prior
knowledge of the general form of x. Common choices of L
include the identity matrix I and finite-difference approxima-
tions to the first or second derivative given by (D1x)n = xn

− xn−1 and (D2x)n = xn+1 − 2xn + xn−1. We compare dif-
ferent techniques for selecting λ and L in Appendix D.

There are a number of powerful techniques for calculat-
ing efficient approximate solutions to Eq. (C2), especially in
cases where the linear operator A is structured,35 such as in
our case, where A is a Toeplitz matrix. For several hundred
time-delays or probe frequencies, we find that we can solve
each deconvolution with Eq. (C2) exactly and quickly (∼1 s
on a modern CPU) by calculating the singular value decompo-
sition of the matrix [ A

λL ]. In principle, it would be possible to
solve both steps in the inversion of the pump-probe response
in a single two-dimensional Tikhonov regularization. Such
2D inversions are routinely performed in image processing,32

but would require slower, more approximate techniques than
the exact solution we used here. Since we find significant im-

TABLE II. Regularization performance for different penalty operators and
parameter selection techniques for 1000 instances of random noise with rel-
ative magnitude 10−2 or 10−3. Numbers are the mean plus or minus one
standard deviation. Improvement is the multiple of the reduction in mean-
squared-error for the reconstructed response function using Tikhonov regu-
larization over the error associated with the naive impulse-probe estimate.

Noise Penalty Selection λopt Improvement

10−2 I Exact 0.151 ± 0.007 2.3 ± 0.2
10−2 D1 Exact 0.340 ± 0.034 4.9 ± 0.7
10−2 D2 Exact 0.67 ± 0.11 6.2 ± 1.2
10−2 D2 GCV 0.78 ± 0.17 5.7 ± 1.2
10−2 D2 NCP 2.57 ± 0.36 2.3 ± 0.4

10−3 I Exact 0.049 ± 0.017 5.9 ± 0.5
10−3 D1 Exact 0.073 ± 0.010 30 ± 5
10−3 D2 Exact 0.112 ± 0.017 56 ± 12
10−3 D2 GCV 0.103 ± 0.019 52 ± 12
10−3 D2 NCP 0.449 ± 0.039 19 ± 2

provement without invoking these more complicated meth-
ods, we do not use them here.

APPENDIX D: PARAMETER SELECTION
FOR TIKHONOV REGULARIZATION

To perform deconvolutions using Eq. (C2), we need to
choose a procedure to select the regularization parameters λ

and L. In practice, there are a wide variety of techniques for
making these selections and the best choice depends on the
particular problem at hand.32 Here we compare the perfor-
mance of different techniques on simulations matching the
dimer problem we analyze in Sec. IV.

To begin, we compared the performance of general form
Tikhonov regularization with L equal to I, D1, and D2,
with λ chosen optimally so as to minimize the exact mean-
squared-error ‖x̂ − x‖2. A summary of reconstructions of
RPP(ω, ρ

(2)
PP (T )) for 1000 instances of low and high noise

is shown in Table II. As a benchmark, we consider the ra-
tio of the mean-squared-error from the Tikhonov estimate to
the mean-square-error of our naive estimate R̂PP(ω, ρ

(2)
PP (T ))

∝ P (ω, T )/Epr(ω), which holds in the limit of an instanta-
neous probe pulse [Eq. (5)]. For our state inversion algorithm,
reconstruction of the response function is most important at
frequencies matching the exciton transition energies, so we
picked ω = ωα , the transition frequency of the higher en-
ergy exciton state. We found qualitatively similar results for
ω = ωβ and other choices of ω as well. As Table II shows,
with exact selection of the best regularization parameter λ,
we found consistently best performance with D2, the linear
operator approximating the second derivative of the response
function with respect to the delay time T. This is an intuitively
reasonable choice, since plausible response functions should
be smooth.

With the choice for L determined, we also need a realis-
tic procedure for selecting the regularization parameter λ. In
a true inversion problem the response function x is unknown,
so we cannot choose λ to minimize the exact mean-squared-
error. There are a variety of standard techniques for making
this choice, with performance that can vary widely depending
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on the problem being solved, so selection of an appropriate
method requires more tests on simulated data. We considered
two such methods for L = D2: generalized cross-validation
(GCV) and the normalized cumulative periodogram (NCP).
We calculate the GCV error using the exact pseudoinverse
solution44 and the NCP error by adding together the errors for
the real and imaginary parts of the spectra.32 We then min-
imize these error estimates as a function of λ using a one-
dimensional search with the downhill simplex method.45 We
also impose the additional restriction λ ≥ 5 × 10−11 to avoid
convergence failures with our SVD implementation that we
encountered when performing deconvolutions on noise-free
simulated spectra. The results, also shown in Table II, show
that GCV is the best choice for our test problem, with perfor-
mance nearly matching that of exact selection technique. In
contrast, NCP systematically overestimated the noise, as in-
dicated by regularization parameters about four times larger
than the exact selection method. However, NCP still offered
an improvement in the reduction of the mean-squared-error
compared to the naive approach.

APPENDIX E: ALTERNATIVE FORMULATION

There are several obvious extensions or alternatives to the
recipe described in Sec. II. For example, the exact same rela-
tions in Eqs. (1)–(3) hold for a general photon-echo (or non-
rephasing) experiment with two distinct pump pulses, except
that in this situation the sum in Eq. (3) to determine the por-
tion of ρ(2) that contributes to the signal should be removed
to leave only one of the two phase-matched contributions. In-
stead, the photon-echo (PE) signal depends on the second-
order density matrix given by

ρ
(2)
PE (t) =

(
i

¯

)2 ∫∫ ∞

0
dt2dt1G(t2)V (+)G(t1)V (−)ρ0

× E+
2 (t − t2)E−

1 (t − t2 − t1). (E1)

However, unlike the case for the state ρ
(2)
PP that contributes to

the pump-probe signal, the excited state portion of ρ
(2)
PE is not

necessarily either Hermitian or equivalent to the total excited
state density matrix. This makes its interpretation less clear
but presents no additional technical difficulties for our inver-
sion procedure.
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